76 research outputs found

    Early Detection of Research Trends

    Get PDF
    Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain degree of popularity and consistently referred to by a community of researchers. However, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge. In this dissertation, we begin to address this challenge by performing a study of the dynamics preceding the creation of new topics. This study indicates that the emergence of a new topic is anticipated by a significant increase in the pace of collaboration between relevant research areas, which can be seen as the 'ancestors' of the new topic. Based on this understanding, we developed Augur, a novel approach to effectively detect the emergence of new research topics. Augur analyses the diachronic relationships between research areas and is able to detect clusters of topics that exhibit dynamics correlated with the emergence of new research topics. Here we also present the Advanced Clique Percolation Method (ACPM), a new community detection algorithm developed specifically for supporting this task. Augur was evaluated on a gold standard of 1,408 debutant topics in the 2000-2011 timeframe and outperformed four alternative approaches in terms of both precision and recall

    How are topics born? Understanding the research dynamics preceding the emergence of new areas

    Get PDF
    The ability to promptly recognise new research trends is strategic for many stake- holders, including universities, institutional funding bodies, academic publishers and companies. While the literature describes several approaches which aim to identify the emergence of new research topics early in their lifecycle, these rely on the assumption that the topic in question is already associated with a number of publications and consistently referred to by a community of researchers. Hence, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge. In this paper, we begin to address this challenge by performing a study of the dynamics preceding the creation of new topics. This study indicates that the emergence of a new topic is anticipated by a significant increase in the pace of collaboration between relevant research areas, which can be seen as the ‘parents’ of the new topic. These initial findings (i) confirm our hypothesis that it is possible in principle to detect the emergence of a new topic at the embryonic stage, (ii) provide new empirical evidence supporting relevant theories in Philosophy of Science, and also (iii) suggest that new topics tend to emerge in an environment in which weakly interconnected research areas begin to cross-fertilise

    Ontology Extraction and Usage in the Scholarly Knowledge Domain

    Get PDF
    Ontologies of research areas have been proven to be useful resources for analysing and making sense of scholarly data. In this chapter, we present the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field, and discuss a number of applications that build on CSO to support high-level tasks, such as topic classification, metadata extraction, and recommendation of books
    • 

    corecore