216 research outputs found
Adsorption of Fibrinogen on Thin Oriented Poly(Tetrafluoroethylene) (PTFE) Fibres Studied by Scanning Force Microscopy
We have investigated fibrinogen adsorption on ordered poly(tetrafluoroethylene), PTFE, fibres deposited on hydrophilic and hydrophobic silicon substrates. Fibrinogen molecules appear to adsorb with their long axis perpendicular to the fibre direction for PTFE fibres having widths of less than 100 nm. On these thin fibres, fibrinogen apparently forms close packed bands or clusters, consisting of small integer numbers of molecules arranged parallel to each other. On broader (\u3e 100 nm) PTFE fibres, the fibrinogen forms two dimensional networks. The orientation of the molecules in these networks is random in the central flat part of the fibres but perpendicular to the fibre direction at the fibre edges. As a tentative explanation, we propose that the observed orientation may be linked to the radius of curvature of the fibre surface
Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)
Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was
inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential
scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C
cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE)
CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which
backbone twists take place with weakened pi-stackings. Two-dimensional exchange
2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the
CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton
longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is
due to the one-dimensional diffusion-like motion of backbone conformational
modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was
approximately 10^7 times larger than that estimated by 2DEX NMR measurements.
These results suggest that there exists anomalous dispersion of modulation
waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is
responsible for the behavior of proton longitudinal relaxation time. On the
other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of
methyl groups that is associated with backbone twists. From proton T_1 and T_2
measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol,
respectively. These were in agreement with 3.0 kcal/mol determined by
Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed
chemical shielding calculation of the methyl-carbon in order to understand
chemical shift tensor behavior, leading to the fact that a quasi-ordered phase
coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.
Optical excitations of Peierls-Mott insulators with bond disorder
The density-matrix renormalization group (DMRG) is employed to calculate
optical properties of the half-filled Hubbard model with nearest-neighbor
interactions. In order to model the optical excitations of oligoenes, a Peierls
dimerization is included whose strength for the single bonds may fluctuate.
Systems with up to 100 electrons are investigated, their wave functions are
analyzed, and relevant length-scales for the low-lying optical excitations are
identified. The presented approach provides a concise picture for the size
dependence of the optical absorption in oligoenes.Comment: 12 pages, 13 figures, submitted to Phys. Rev.
Excitons in one-dimensional Mott insulators
We employ dynamical density-matrix renormalization group (DDMRG) and
field-theory methods to determine the frequency-dependent optical conductivity
in one-dimensional extended, half-filled Hubbard models. The field-theory
approach is applicable to the regime of `small' Mott gaps which is the most
difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers
analytical results obtained previously by means of strong-coupling techniques.
We focus on exciton formation at energies below the onset of the absorption
continuum. As a consequence of spin-charge separation, these Mott-Hubbard
excitons are bound states of spinless, charged excitations (`holon-antiholon'
pairs). We also determine exciton binding energies and sizes. In contrast to
simple band insulators, we observe that excitons exist in the Mott-insulating
phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore,
our results show that the exciton binding energy and size are not related in a
simple way to the strength of the Coulomb interaction.Comment: 15 pages, 6 eps figures, corrected typos in labels of figures 4,5,
and
Photoemission Spectroscopy and Atomic Force Microscopy Investigation of Vapor Phase Co-Deposited Silver/Poly(3-hexylthiophene) Composites
Nanocomposite matrices of silver/poly(3-hexylthiophene) (P3HT) were prepared
in ultrahigh vacuum through vapor-phase co-deposition. Change in
microstructure, chemical nature and electronic properties with increasing
filler (Ag) content were investigated using in-situ XPS and UPS, and ambient
AFM. At least two chemical binding states occur between Ag nanoparticles and
sulfur in P3HT at the immediate contact layer but no evidence of interaction
between Ag and carbon (in P3HT) was found. AFM images reveal a change in Ag
nanoparticles size with concentration which modifies the microstructure and the
average roughness of the surface. Under co-deposition, P3HT largely retains its
conjugated structures, which is evidenced by the similar XPS and UPS spectra to
those of P3HT films deposited on other substrates. We demonstrate here that the
magnitude of the barrier height for hole injection and the position of the
highest occupied band edge (HOB) with respect to the Fermi level of Ag can be
controlled and changed by adjusting the metal (Ag) content in the composite.
Furthermore, UPS reveals distinct features related to the C 2p (Sigma states)
in the 5-12 eV regions, indicating the presence of ordered P3HT which is
different from solution processed films.Comment: Scudier and Wei provided equal contributio
- …