112 research outputs found

    Sources of Salinization of Groundwater in the Lower Yarmouk Gorge, East of the River Jordan

    Get PDF
    In the Lower Yarmouk Gorge the chemical composition of regional, fresh to brackish, mostly thermal groundwater reveals a zonation in respect to salinization and geochemical evolution, which is seemingly controlled by the Lower Yarmouk fault (LYF) but does not strictly follow the morphological Yarmouk Gorge. South of LYF, the artesian Mukeihbeh well field region produces in its central segment groundwaters, an almost pure basaltic-rock type with a low contribution (<0.3 vol-%) of Tertiary brine, hosted in deep Cretaceous and Jurassic formations. Further distal, the contribution of limestone water increases, originating from the Ajloun Mountains in the South. North of the LYF, the Mezar wells, the springs of Hammat Gader and Ain Himma produce dominantly limestone water, which contains 0.14-3 vol-% of the Tertiary brine, and hence possesses variable salinity. The total dissolved equivalents, TDE, of solutes gained by water/rock interaction (WRI) and mixing with brine, TDEWRI+brine, amount to 10-70% of total salinity in the region comprising the Mukheibeh field, Ain Himma and Mezar 3 well; 55-70% in the springs of Hammat Gader; and 80-90% in wells Mezar 1 and 2. The type of salinization indicates that the Lower Yarmouk fault seemingly acts as the divide between the Ajloun and the Golan Heights-dominated groundwaters

    Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements

    Get PDF
    United States. National Aeronautics and Space Administration (NAG5-12669)United States. National Aeronautics and Space Administration (NNX07AE89G)United States. National Aeronautics and Space Administration (NNX11AF17G)United States. National Aeronautics and Space Administration (NNX16AC98G

    Evidence of a recent decline in UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements

    Get PDF
    National greenhouse gas inventories (GHGIs) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGIs. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emission Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high global warming potentials (GWPs), and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication, its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions from 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009-2012 shows a drop of 35ĝ€¯%, indicating progress toward the target of a 79ĝ€¯% decrease in sales by 2030. The total InTEM HFC emission estimates (2008-2018) are on average 73 (62-83)ĝ€¯% of, or 4.3 (2.7-5.9)ĝ€¯Tgĝ€¯CO2-eqĝ€¯yr-1 lower than, the total HFC emission estimates from the UK GHGI. There are also significant discrepancies between the two estimates for the individual HFCs.</p

    Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals

    Get PDF
    Abstract. Emissions of the potent greenhouse gas perfluorocyclobutane (c-C4F8, PFC-318, octafluorocyclobutane) into the global atmosphere inferred from atmospheric measurements have been increasing sharply since the early 2000s. We find that these inferred emissions are highly correlated with the production of hydrochlorofluorocarbon-22 (HCFC-22, CHClF2) for feedstock (FS) uses, because almost all HCFC-22 FS is pyrolyzed to produce (poly)tetrafluoroethylene ((P)TFE) and hexafluoropropylene (HFP), a process in which c-C4F8 is a known by-product, causing a significant fraction of global c-C4F8 emissions. We find a global emission factor of ∼0.003 kg c-C4F8 per kilogram of HCFC-22 FS pyrolyzed. Mitigation of these c-C4F8 emissions, e.g., through process optimization, abatement, or different manufacturing processes, such as refined methods of electrochemical fluorination and waste recycling, could reduce the climate impact of this industry. While it has been shown that c-C4F8 emissions from developing countries dominate global emissions, more atmospheric measurements and/or detailed process statistics are needed to quantify c-C4F8 emissions at country to facility levels

    The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF&lt;sub&gt;6&lt;/sub&gt;)

    Get PDF
    We report a 40-year history of SF6 atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of 7.3±0.6 Gg yr-1 in 2008 and over the past decade emissions have continued to increase by about 24% to 9.04±0.35 Gg yr-1 in 2018. We show that changing patterns in SF6 consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF6-insulated switchgear, circuit breakers, and transformers. The large bank of SF6 sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF6 occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF6 in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF6-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF6 emissions have increased due to an expansion in the growth of the electrical power, metal, and electronics industries to support their continuing development. There is an annual difference of 2.5-5 Gg yr-1 (1990-2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF6. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF6 inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for ∼36% and 3.1 %, respectively, of our global SF6 emissions estimate.NASA (Grant NAG5-12669, NNX07AE89G and NNX11AF17G)NOAA (Contract RA-133R-15-CN-0008

    Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates

    Get PDF
    We report continuous surface observations of carbon dioxide (CO_2) and methane (CH_4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO_2 and CH_4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one continental site located in Victorville (VIC), in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within  ∼  1 ppm CO_2 and  ∼  10 ppb CH_4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO_2 and CH_4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of  ∼  20 ppm CO_2 and  ∼  150 ppb CH_4 during 2015 as well as  ∼  15 ppm CO_2 and  ∼  80 ppb CH_4 during mid-afternoon hours (12:00–16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO_2 and 1 ppb CH_4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is  ∼  10 and  ∼  15 % of the median mid-afternoon enhancement near downtown LA for CO_2 and CH_4, respectively. Overall, analytical and background uncertainties are small relative to the local CO_2 and CH_4 enhancements; however, our results suggest that reducing the uncertainty to less than 5 % of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions

    Estimating methane emissions in California's urban and rural regions using multitower observations

    Get PDF
    We present an analysis of methane (CH_4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH_4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH_4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH_4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH_4 emissions are 2.42 ± 0.49 Tg CH_4/yr (at 95% confidence), higher (1.2–1.8 times) than the current CARB inventory (1.64 Tg CH_4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH_4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH_4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH_4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32)

    Association between T2-related co-morbidities and effectiveness of biologics in severe asthma

    Get PDF
    Acknowledgments The authors thank Mr. Joash Tan (BSc, Hons), of the Observational and Pragmatic Research Institute (OPRI), and Ms Andrea Lim (BSc, Hons) of the Observational Pragmatic Research Institute (OPRI) for their editorial and formatting assistance that supported the development of this publication. Funding statement: This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. AstraZeneca UK LimitedPeer reviewe
    corecore