627 research outputs found

    Domain walls at the spin density wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure

    Full text link
    We report the first comprehensive investigation of the organic superconductor (TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal phase transition where phase coexistence occurs. At low temperature, the transition of metallic domains towards superconductivity is used to reveal the various textures. In particular, we demonstrate experimentally the existence of 1D and 2D metallic domains with a cross-over from a filamentary superconductivity mostly along the c?-axis to a 2D superconductivity in the b?c-plane perpendicular to the most conducting direction. The formation of these domain walls may be related to the proposal of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.Comment: 5 page

    Adverse drug events associated with vitamin K antagonists: factors of therapeutic imbalance

    Get PDF
    Nancy El-Helou, Amal Al-Hajje, Rola Ajrouche, Sanaa Awada, Samar Rachidi, Salam Zein, Pascale SalamehClinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, LebanonBackground: Adverse drug events (ADE) occur frequently during treatment with vitamin K antagonists (AVK) and contribute to increase hemorrhagic risks.Methods: A retrospective study was conducted over a period of 2 years. Patients treated with AVK and admitted to the emergency room of a tertiary care hospital in Beirut were included. The aim of the study was to identify ADE characterized by a high international normalized ratio (INR) and to determine the predictive factors responsible for these events. Statistical analysis was performed with the SPSS statistical package.Results: We included 148 patients. Sixty-seven patients (47.3%) with an INR above the therapeutic range were identified as cases. The control group consisted of 81 patients (54.7%) with an INR within the therapeutic range. Hemorrhagic complications were observed in 53.7% of cases versus 6.2% of controls (P < 0.0001). No significant difference was noticed between cases and controls regarding the indication and the dose of AVK. Patients aged over 75 years were more likely to present an INR above the therapeutic range (58.2%, P = 0.049). Recent infection was present in 40.3% of cases versus 6.2% of controls (P < 0.0001) and hypoalbuminemia in 37.3% of cases versus 6.1% of controls (P < 0.0001). Treatment with antibiotics, amiodarone, and anti-inflammatory drugs were also factors of imbalance (P < 0.0001).Conclusion: Many factors may be associated with ADE related to AVK. Monitoring of INR and its stabilization in the therapeutic range are important for preventing these events.Keywords: adverse drug events, vitamin K antagonists, bleeding risks, therapeutic imbalanc

    Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4

    Full text link
    Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase coexistence between semiconducting and metallic (superconducting) regions (filaments or droplets) in a wide range of pressure. In this regime, the superconducting upper critical field for H parallel to both c* and b' axes present a linear part at low fields followed by a divergence above a cross-over field. This cross-over corresponds to the 3D-2D decoupling transition expected in filamentary or granular superconductors. The sharpness of the transition also demonstrates that all filaments are of similar sizes and self organize in a very ordered way. The distance between the filaments and their cross-section are estimated.Comment: 4 pages, 4 figure

    Optimal controllers and configurations of 100% PV and energy Storage systems for a microgrid : the case study of a small town in Jordan

    Get PDF
    Renewable energy systems such as Photovoltaic (PV) have become one of the best options for supplying electricity at the distribution network level. This is mainly because the PV system is sustainable, environmentally friendly, and is a low-cost form of energy. The intermittent and unpredictable nature of renewable energy sources which leads to a mismatch between the power generation and load demand is the challenge to having 100% renewable power networks. Therefore, an Energy Storage System (ESS) can be a significant solution to overcome these challenges and improve the reliability of the network. In Jordan, the energy sector is facing a number of challenges due to the high energy-import dependency, high energy costs, and the inadequate electrification of rural areas. In this paper, the optimal integration of PV and ESS systems is designed and developed for a distribution network in Jordan. The economic and energy performance of the network and a proposed power network under different optimization algorithms and power network operation scenarios are investigated. Metaheuristic optimization algorithms, namely: Golden Ratio Optimization Method (GROM) and Particle Swarm Optimization (PSO) algorithms, are employed to find the optimal configurations and integrated 100% PV and ESS for the microgrid

    Influence of Material Properties on Rate of Resorption of Two Bone Graft Materials after Sinus Lift Using Radiographic Assessment

    Get PDF
    . Purpose. The aim of this study was to investigate the influence of chemical and physical properties of two graft materials on the rate of resorption. Materials and Methods. Direct sinus graft procedure was performed on 22 patients intended for implant placement. Two types of graft materials were used (Bio-Oss and Cerabone) and after 8 months healing time the implants were inserted. Radiographic assessment was performed over the period of four years. Particle size, rate of calcium release, and size and type of crystal structure of each graft were evaluated. Results. The average particle size of Bio-Oss (1 mm) was much smaller compared to Cerabone (2.7 mm). The amount of calcium release due to dissolution of material in water was much higher for Bio-oss compared to Cerabone. X-ray image analysis revealed that Bio-Oss demonstrated significantly higher volumetric loss (33.4 ± 3.1%) of initial graft size compared to Cerabone (23.4 ± 3.6%). The greatest amount of vertical loss of graft material volume was observed after one year of surgery. Conclusion. The chemical and physical properties of bone graft material significantly influence resorption rate of bone graft materials used for sinus augmentation

    Influence of Material Properties on Rate of Resorption of Two Bone Graft Materials after Sinus Lift Using Radiographic Assessment

    Get PDF
    Purpose. The aim of this study was to investigate the influence of chemical and physical properties of two graft materials on the rate of resorption. Materials and Methods. Direct sinus graft procedure was performed on 22 patients intended for implant placement. Two types of graft materials were used (Bio-Oss and Cerabone) and after 8 months healing time the implants were inserted. Radiographic assessment was performed over the period of four years. Particle size, rate of calcium release, and size and type of crystal structure of each graft were evaluated. Results. The average particle size of Bio-Oss (1 mm) was much smaller compared to Cerabone (2.7 mm). The amount of calcium release due to dissolution of material in water was much higher for Bio-oss compared to Cerabone. X-ray image analysis revealed that Bio-Oss demonstrated significantly higher volumetric loss (33.4 ± 3.1%) of initial graft size compared to Cerabone (23.4 ± 3.6%). The greatest amount of vertical loss of graft material volume was observed after one year of surgery. Conclusion. The chemical and physical properties of bone graft material significantly influence resorption rate of bone graft materials used for sinus augmentation

    Identifying Immunological and Clinical Predictors of COVID-19 Severity and Sequelae by Mathematical Modeling

    Get PDF
    Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19
    corecore