155 research outputs found
Quantitative determination of aflatoxin by high performance liquid chromatography in wheat silos in Golestan province, north of Iran
Background: Aflatoxins are the most common mycotoxins that contaminate crops. They are produced by fungi such as Aspergillus flavus and Aspergillus parasiticus. Wheat (Tricitumaestivum) is one of the most important staple foods used in Iran, and the environmental conditions in the north of Iran are favorable to fungal growth. This study was designed in order to determine the aflatoxin concentration in wheat samples from silos in Golestan Province north of Iran. Methods: Samples were collected from three silos of Golestan province. First, aflatoxins were isolated using immu-noaffinity chromatography. Then the aflatoxin concentrations were determined by High performance liquid chroma-tography (HPLC) method and fluorescence detector. Results: Ten out of 34 samples (29.4 of samples) were contaminated by aflatoxins.No concentration was found above permitted aflatoxin levels in Iran (15 ng/g). In one sample (2.9), aflatoxin B1 was seen over the permissible limits in Iran. The highest level found in samples for total aflatoxin, aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatox-in G2 were 7.08 ng/g, 6.91 ng/g, 0.29 ng/g, 1.37 ng/g and 0.23 ng/g, respectively. No correlation was found between humidity levels in wheat samples contained aflatoxin and wheat samples without aflatoxin. Conclusion: Despite the total aflatoxins determined in samples were below the permissible limits in Iran, the 29 aflatoxin contamination rate can negatively affect health factors and it should not be neglected. So, it is predictable that if the storage duration of samples increases, the aflatoxin contamination levels will increase. © 2015, Iranian Journal of Public Health. All rights reserved
Markov modeling of moving target defense games
We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies
The Effect of Low‑Dose Ketamine (Preemptive Dose) on Postcesarean Section Pain Relief
Background: Postsurgical pain is the main cause of anxiety in patients; therefore, analgesics (adjuvants) such as preemptive doses of ketamine with minimal adverse effects would be beneficial. However, studies are needed regarding their efficacy. Aim: To determine the preemptive effect of intravenous ketamine on pain intensity and need to opioids in cesarean section which performed under spinal anesthesia. Subjects and Methods: The study was a randomized, double‑blinded, clinical trial involving 60 term parturients for cesarean, using random block method, they were divided into two groups of each. The case group received ketamine with dose of 0.2 mg/kg and the control one normal saline with the same volume. Pain intensity was compared in 0,30,60,90,120,150, and 180 min and 6,12,18, and 24 h after surgeries with visual analog scale (VAS) index. The average opioid usage was compared during 24 h after those too. Final analyses were done with Mann‑Whitney, Chi‑square, and Spss.v. 16 (P < 0.05 was meaningful level). Results: There was not significant statistical difference on average VAS during interrupted times (F = 0.15, P = 0.70). Average dosage of diclofenac suppository and mean time for taking the first dosage of opioids have not statistical difference too (respectively; P = 0.76, P = 0.87). Average dose of pethidine was lesser than placebo statistically. It means, the case group did not take pethidine but this amount was 6 (20%) in the control one (P = 0.02). Conclusion: Taking the preemptive dosage of ketamine (0.2 mg/kg) before cesarean could act as a probably model for decreasing opioid consumption. Keywords: Ketamine, low dose, pain relief, preemptiv
Changes in electrolytes and urea of blood according to the reproduction season and body size in the ذrown banded ذamboo shark (Chiloscyllium punctatum) from Persian Gulf
Cartilaginous fishes were used urea to regulate osmolarity of internal fluids. Despite studies on the regulation of blood osmolytes values, the effect of body size and reproduction on concentration of these materials seems necessary. In this investigation, 36 individual of Brown banded Bamboo sharks (Chiloscyllium punctatum) in both autumn (before reproduction) and spring (period of reproduction) seasons were caught from Dervish's Creek located at the northern of Persian Gulf. After catching sharks, the blood samples were taken from fish and then weighing, biometry and the numbering of sharks. The electrolyte analyzers and auto analyzer was used to measurement respectively of serum electrolytes and urea concentrations. The results showed that there was no significant difference in the concentration of blood osmolytes between males and females (P>0/05), but there was a significant difference between the sharks caught in autumn with sharks caught in spring (P<0/05). On the other hand, with classifying the sharks into different groups becames that the levels of osmolytes were higher in the blood of smaller sharks than larger one (P<0/05). So that, Striking result of this study, the relative reduction in blood electrolytes and urea concentrations are associated with increased body size
Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: A magnetically retrievable nanocatalyst for efficient C-C and C-N cross coupling reactions and an investigation of its cardiovascular protective effects
The present report represents the synthesis of a novel Pd NPs immobilized over a natural polysaccharide (pectin) coated Fe3O4 magnetic nanocomposite material (Fe3O4@pectin/Pd) for investigating the cardiovascular protective effects. The biomolecular functionalization not only stabilizes the ferrite nanoparticles from agglomeration but also provides an environment for the biogenic reduction of Pd2+ ions. This protocol is a promising breakthrough for the synthesis of a quasi-heterogeneous catalyst, a bridge between heterogeneous and homogeneous medium. The structure, morphology and physicochemical properties of the material were characterized utilizing various analytical techniques like FT-IR FE-SEM, TEM, VSM, EDX-elemental mapping, ICP, EDX and XPS. The catalyst showed excellent reactivity in C-C and C-N cross coupling reactions via Suzuki and Buchwald-Hartwig reactions respectively. An array of different biphenyls and aryl amines were then procured by reactions of various aryl halides with phenyl boronic acid or secondary amines over the catalyst affording good to excellent yields. The catalyst was easily recoverable using an external magnet and thereafter recycled for several trials with insignificant palladium leaching or loss in catalytic performance. To investigate the cardiovascular protective activities of catalyst, the MTT assay was done on Human Aortic Endothelial Cells (HAEC), Human Coronary Artery Endothelial Cells (HCAEC), and Human Pulmonary Artery Endothelial Cells (HPAEC) cell lines. Nanocatalyst-treated cell cutlers significantly (p <= 0.01) decreased the caspase-3 activity, and DNA fragmentation. It raised the cell viability and mitochondrial membrane potential in the high concentration of Mitoxantrone-treated HAEC, HCAEC, and HPAEC cells. According to the above findings, nanocatalyst can be administrated as a cardiovascular protective drug for the treatment of cardiovascular diseases after approving in the clinical trial studies in humans. (C) 2020 Published by Elsevier B.V
Static and vibration analysis of functionally graded beams using refined shear deformation theory
Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes
Alterations in early auditory evoked potentials and brainstem transmission time associated with tinnitus residual inhibition induced by auditory electrical stimulation
Introduction: Residual inhibition (RI) is the temporary inhibition of tinnitus by use of masking stimuli when the device is turned off. Objective: The main aim of this study was to evaluate the effects of RI induced by auditory electrical stimulation (AES) in the primary auditory pathways using early auditory-evoked potentials (AEPs) in subjective idiopathic tinnitus (SIT) subjects. Materials and Methods: A randomized placebo-controlled study was conducted on forty-four tinnitus subjects. All enrolled subjects based on the responses to AES, were divided into two groups of RI and Non-RI (NRI). The results of the electrocochleography (ECochG), auditory brain stem response (ABR) and brain stem transmission time (BTT) were determined and compared pre- and post-AES in the studied groups. Results: The mean differences in the compound action potential (CAP) amplitudes and III/V and I/V amplitude ratios were significantly different between the RI, NRI and PES controls. BTT was significantly decreased associated with RI. Conclusion: The observed changes in AEP associated with RI suggested some peripheral and central auditory alterations. Synchronized discharges of the auditory nerve fibers and inhibition of the abnormal activity of the cochlear nerve by AES may play important roles associated with RI. Further comprehensive studies are required to determine the mechanisms of RI more precisely
An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach
The Landauer approach provides a conceptually simple way to calculate the
intrinsic thermoelectric (TE) parameters of materials from the ballistic to the
diffusive transport regime. This method relies on the calculation of the number
of propagating modes and the scattering rate for each mode. The modes are
calculated from the energy dispersion (E(k)) of the materials which require
heavy computation and often supply energy relation on sparse momentum (k)
grids. Here an efficient method to calculate the distribution of modes (DOM)
from a given E(k) relationship is presented. The main features of this
algorithm are, (i) its ability to work on sparse dispersion data, and (ii)
creation of an energy grid for the DOM that is almost independent of the
dispersion data therefore allowing for efficient and fast calculation of TE
parameters. The inclusion of scattering effects is also straight forward. The
effect of k-grid sparsity on the compute time for DOM and on the sensitivity of
the calculated TE results are provided. The algorithm calculates the TE
parameters within 5% accuracy when the K-grid sparsity is increased up to 60%
for all the dimensions (3D, 2D and 1D). The time taken for the DOM calculation
is strongly influenced by the transverse K density (K perpendicular to
transport direction) but is almost independent of the transport K density
(along the transport direction). The DOM and TE results from the algorithm are
bench-marked with, (i) analytical calculations for parabolic bands, and (ii)
realistic electronic and phonon results for .Comment: 16 Figures, 3 Tables, submitted to Journal of Computational
electronic
Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39–43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ1–42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy
Decoupling lattice and magnetic instabilities in frustrated CuMnO2
Funding: This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Batelle, LLC, for the DOE under contract DE-AC05-1008 00OR22725. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Co-operative Agreement DE-NA0001982. Ce travail a été soutenu par le programme “Investissements d’Avenir”, projet ISITE-BFC (contrat ANR-15-IDEX-0003).The AMnO2 delafossites (A = Na, Cu) are model frustrated antiferromagnets, with triangular layers of Mn3+ spins. At low temperatures (TN = 65 K), a C2/m → P1̅ transition is found in CuMnO2, which breaks frustration and establishes magnetic order. In contrast to this clean transition, A = Na only shows short-range distortions at TN . Here, we report a systematic crystallographic, spectroscopic, and theoretical investigation of CuMnO2. We show that, even in stoichiometric samples, nonzero anisotropic Cu displacements coexist with magnetic order. Using X-ray/neutron diffraction and Raman scattering, we show that high pressures act to decouple these degrees of freedom. This manifests as an isostuctural phase transition at ∼10 GPa, with a reversible collapse of the c-axis. This is shown to be the high-pressure analogue of the c-axis negative thermal expansion seen at ambient pressure. Density functional theory (DFT) simulations confirm that dynamical instabilities of the Cu+ cations and edge-shared MnO6 layers are intertwined at ambient pressure. However, high pressure selectively activates the former, before an eventual predicted reemergence of magnetism at the highest pressures. Our results show that the lattice dynamics and local structure of CuMnO2 are quantitatively different from nonmagnetic Cu delafossites and raise questions about the role of intrinsic inhomogeneity in frustrated antiferromagnets.PostprintPeer reviewe
- …