112 research outputs found

    Structural Aspects of Protein Synthesis

    No full text

    Occurrence, conformational features and amino acid propensities for the pi-helix.

    No full text
    The most abundant helix type in proteins is the alpha-helix, accounting for about 31% of amino acid secondary structure states, while the 3(10)-helix accounts for about 4%. The pi-helix appears to be extremely rare and is considered to be unstable. Existing secondary structure definition methods find very few within the Protein Data Bank. Using an improved pi-helix definition algorithm to search a non-redundant subset of high-resolution and well-refined protein structures, we found that almost every tenth protein contained a pi-helix. This enabled us to show for the first time that the pi-helix has structural parameters that are different from the hypothesized model values. It also has distinctive amino acid preferences and it is conserved within functionally related proteins. Features that may contribute to the stability of the pi-helical structure have also been identified. In addition to hydrogen bonds, several other factors contribute to the stability of pi-helices. The pi-helix may have some functional advantages over other helical structures. Thus, we describe cases where the side chains of functionally important residues at every fourth position within a pi-helix could be aligned and brought close together in a way that would not be allowed by any other helix type

    A decade of progress in understanding the structural basis of protein synthesis

    No full text
    The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system
    • …
    corecore