342 research outputs found
Modeling Documents with Deep Boltzmann Machines
We introduce a Deep Boltzmann Machine model suitable for modeling and
extracting latent semantic representations from a large unstructured collection
of documents. We overcome the apparent difficulty of training a DBM with
judicious parameter tying. This parameter tying enables an efficient
pretraining algorithm and a state initialization scheme that aids inference.
The model can be trained just as efficiently as a standard Restricted Boltzmann
Machine. Our experiments show that the model assigns better log probability to
unseen data than the Replicated Softmax model. Features extracted from our
model outperform LDA, Replicated Softmax, and DocNADE models on document
retrieval and document classification tasks.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence (UAI2013
Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback
Albeit, the implicit feedback based recommendation problem - when only the
user history is available but there are no ratings - is the most typical
setting in real-world applications, it is much less researched than the
explicit feedback case. State-of-the-art algorithms that are efficient on the
explicit case cannot be straightforwardly transformed to the implicit case if
scalability should be maintained. There are few if any implicit feedback
benchmark datasets, therefore new ideas are usually experimented on explicit
benchmarks. In this paper, we propose a generic context-aware implicit feedback
recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor
factorization learning method that scales linearly with the number of non-zero
elements in the tensor. The method also allows us to incorporate diverse
context information into the model while maintaining its computational
efficiency. In particular, we present two such context-aware implementation
variants of iTALS. The first incorporates seasonality and enables to
distinguish user behavior in different time intervals. The other views the user
history as sequential information and has the ability to recognize usage
pattern typical to certain group of items, e.g. to automatically tell apart
product types or categories that are typically purchased repetitively
(collectibles, grocery goods) or once (household appliances). Experiments
performed on three implicit datasets (two proprietary ones and an implicit
variant of the Netflix dataset) show that by integrating context-aware
information with our factorization framework into the state-of-the-art implicit
recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012,
Bristol, U
VIP: Incorporating Human Cognitive Biases in a Probabilistic Model of Retweeting
Information spread in social media depends on a number of factors, including
how the site displays information, how users navigate it to find items of
interest, users' tastes, and the `virality' of information, i.e., its
propensity to be adopted, or retweeted, upon exposure. Probabilistic models can
learn users' tastes from the history of their item adoptions and recommend new
items to users. However, current models ignore cognitive biases that are known
to affect behavior. Specifically, people pay more attention to items at the top
of a list than those in lower positions. As a consequence, items near the top
of a user's social media stream have higher visibility, and are more likely to
be seen and adopted, than those appearing below. Another bias is due to the
item's fitness: some items have a high propensity to spread upon exposure
regardless of the interests of adopting users. We propose a probabilistic model
that incorporates human cognitive biases and personal relevance in the
generative model of information spread. We use the model to predict how
messages containing URLs spread on Twitter. Our work shows that models of user
behavior that account for cognitive factors can better describe and predict
user behavior in social media.Comment: SBP 201
Improving neural networks by preventing co-adaptation of feature detectors
When a large feedforward neural network is trained on a small training set,
it typically performs poorly on held-out test data. This "overfitting" is
greatly reduced by randomly omitting half of the feature detectors on each
training case. This prevents complex co-adaptations in which a feature detector
is only helpful in the context of several other specific feature detectors.
Instead, each neuron learns to detect a feature that is generally helpful for
producing the correct answer given the combinatorially large variety of
internal contexts in which it must operate. Random "dropout" gives big
improvements on many benchmark tasks and sets new records for speech and object
recognition
Joint Deep Modeling of Users and Items Using Reviews for Recommendation
A large amount of information exists in reviews written by users. This source
of information has been ignored by most of the current recommender systems
while it can potentially alleviate the sparsity problem and improve the quality
of recommendations. In this paper, we present a deep model to learn item
properties and user behaviors jointly from review text. The proposed model,
named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel
neural networks coupled in the last layers. One of the networks focuses on
learning user behaviors exploiting reviews written by the user, and the other
one learns item properties from the reviews written for the item. A shared
layer is introduced on the top to couple these two networks together. The
shared layer enables latent factors learned for users and items to interact
with each other in a manner similar to factorization machine techniques.
Experimental results demonstrate that DeepCoNN significantly outperforms all
baseline recommender systems on a variety of datasets.Comment: WSDM 201
Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive
The German Broadcasting Archive (DRA) maintains the cultural heritage of
radio and television broadcasts of the former German Democratic Republic (GDR).
The uniqueness and importance of the video material stimulates a large
scientific interest in the video content. In this paper, we present an
automatic video analysis and retrieval system for searching in historical
collections of GDR television recordings. It consists of video analysis
algorithms for shot boundary detection, concept classification, person
recognition, text recognition and similarity search. The performance of the
system is evaluated from a technical and an archival perspective on 2,500 hours
of GDR television recordings.Comment: TPDL 2016, Hannover, Germany. Final version is available at Springer
via DO
- …