9 research outputs found

    Significant Association of Streptococcus bovis with Malignant Gastrointestinal Diseases

    Get PDF
    Streptococcus bovis is a Gram-positive bacterium causing serious human infections, including endocarditis and bacteremia, and is usually associated with underlying disease. The aims of the current study were to compare prevalence of the bacterium associated with malignant and nonmalignant gastrointestinal diseases and to determine the susceptibility of the isolated strains to different antimicrobial agents. The result showed that the prevalence of S. bovis in stool specimens from patients with malignant or with nonmalignant gastrointestinal diseases was statistically significant. This result may support the idea that there is correlation between S. bovis and the malignant gastrointestinal diseases

    Elevated antibiotic resistance of Sudanese urinary tract infection bacteria

    Get PDF
    This study determined the prevalence of urinary tract infections in the Sudanese state of Khartoum and antimicrobial susceptibility pattern of isolated bacterial species. 200 adult patient urine specimens were collected and cultivated to identify the growing bacteria and their susceptibility to antibiotics. 35 % of specimens had significant bacterial growth. The most frequent isolates in this study were E. coli, E. faecalis and S. aureus. Most of the isolates were resistant to many antibiotics; Gram-negative and Gram-positive isolates were resistant to 67 % and 44 % of the examined antibiotics, respectively. E. coli was the most frequent bacterium in the studied samples and it was highly resistant to first-line antibiotics. The most resistant bacteria isolated were Pseudomonas species and the lowest was for S. saprophyticus. The results highlighted the need for knowledge about antibiotic susceptibility profile of the bacteria causing UTI prior to antibiotic prescription in order to ensure optimal treatment

    Detection of Vibrio cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic areas in Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio cholerae </it>O1 and <it>V. cholerae </it>O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. <it>V. cholerae </it>and the free-living amoebae <it>Acanthamoeba </it>species are present in aquatic environments, including drinking water and it has shown that <it>Acanthamoebae </it>support bacterial growth and survival. Recently it has shown that <it>Acanthamoeba </it>species enhanced growth and survival of <it>V. cholerae </it>O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both <it>V. cholerae </it>and <it>Acanthamoeba </it>species from same natural water samples by polymerase chain reaction (PCR).</p> <p>Findings</p> <p>For the first time both <it>V. cholerae </it>and <it>Acanthamoeba </it>species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected <it>V. cholerae </it>was found with <it>Acanthamoeba </it>in same water samples.</p> <p>Conclusions</p> <p>The current findings disclose <it>Acanthamoedae </it>as a biological factor enhancing survival of <it>V. cholerae </it>in nature.</p

    Significant Association of Streptococcus bovis with Malignant Gastrointestinal Diseases

    No full text
    Streptococcus bovis is a Gram-positive bacterium causing serious human infections, including endocarditis and bacteremia, and is usually associated with underlying disease. The aims of the current study were to compare prevalence of the bacterium associated with malignant and nonmalignant gastrointestinal diseases and to determine the susceptibility of the isolated strains to different antimicrobial agents. The result showed that the prevalence of S. bovis in stool specimens from patients with malignant or with nonmalignant gastrointestinal diseases was statistically significant. This result may support the idea that there is correlation between S. bovis and the malignant gastrointestinal diseases

    Prevalence of Protozoa Species in Drinking and Environmental Water Sources in Sudan

    No full text
    Protozoa are eukaryotic cells distributed worldwide in nature and are receiving increasing attention as reservoirs and potential vectors for the transmission of pathogenic bacteria. In the environment, on the other hand, many genera of the protozoa are human and animal pathogens. Only limited information is available on these organisms in developing countries and so far no information on their presence is available from Sudan. It is necessary to establish a molecular identification of species of the protozoa from drinking and environmental water. 600 water samples were collected from five states (Gadarif, Khartoum, Kordofan, Juba, and Wad Madani) in Sudan and analysed by polymerase chain reaction (PCR) and sequencing. 57 out of 600 water samples were PCR positive for protozoa. 38 out of the 57 positive samples were identified by sequencing to contain 66 protozoa species including 19 (28.8%) amoebae, 17 (25.7%) Apicomplexa, 25 (37.9%) ciliates, and 5 (7.6%) flagellates. This study utilized molecular methods identified species belonging to all phyla of protozoa and presented a fast and accurate molecular detection and identification of pathogenic as well as free-living protozoa in water uncovering hazards facing public health

    Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    No full text
    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria

    Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Get PDF
    Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA) and outer membrane vesicles (OMVs) in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment
    corecore