72 research outputs found
Hades experiment probing baryonic matter at SIS18 overview of results
HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed
Hades experiments : investigation of hadron in-medium properties
Hadron modifications in nuclear matter are discussed in connection to chiral symmetry restoration and/or hadronic many body effects. Experiments with photon, proton and heavy ion beams are used to probe properties of hadrons embedded in nuclear matter at different temperatures and densities. Most of the information was gathered for the light vector mesons , and . HADES is a second generation experiment operating at GSI (Darmstadt) with the main aim to study in-medium modifications by means of dielectron production at the SIS18/Bevelac energy range. Large acceptance and excellent particle identification capabilities allow also for measurements of strangeness production. These abilities combined with the variety of beams provided by the SIS18 lead to a characterization of properties of the dense baryonic matter properties created in heavy ion collisions at these energies. A review of recent experimental results obtained by HADES is presented, with the main emphasis on hadron properties in nuclear matter
In-medium hadron properties: Experimental overview
Hadron modifications in nuclear matter are discussed in connection to chiral symmetry restoration and/or hadronic many body effects. Experiments with photon, proton and heavy ion beams are used to probe properties of hadrons embedded in nuclear matter at different temperatures and densities. Most of the information has been gathered for the light vector mesons ρ, ω and φ which, due to their short life time, decay to large extent inside the medium. Decay channels involving dileptons, photons and hadrons have been selected to measure meson line shape and/or nuclear transparency in cold nuclear matter. Measurements of dileptons from heavy ion collisions allow to separate contribution from dense phase and to characterize its properties. A review of recent experimental results, focused on low energy domain, is presented
Pluto: a Monte Carlo simulation tool for hadronic physics
Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. The package is entirely based on ROOT, without the need of additional packages, and uses the embedded C++ interpreter of ROOT to control the event production. The generation of events based on a single reaction chain and the storage of the resulting particle objects can be done with a few lines of a ROOT-macro. However, the complete control of the package can be taken over by the steering macro and user-defined models may be added without a recompilation of the framework. Multi-reaction cocktails can be facilitated as well using either mass-dependent or user-defined static branching ratios. The included physics uses resonance production with mass-dependent Breit-Wigner sampling. The calculation of partial and total widths for resonances producing unstable particles is performed recursively in a coupled-channel approach. Here, particular attention is paid to the electromagnetic decays, motivated by the physics program of HADES. The thermal model supports 2-component thermal distributions, longitudinal broadening, radial blast, direct and elliptic flow, and impact-parameter sampled multiplicities. The interface allows angular distribution models (e.g. for the primary meson emission) to be attached by the user as well as descriptions of multi-particle correlations using decay chain templates. The exchange of mass sampling or momentum generation models is also possible. The first feature allows for consistent coupled-channel calculations, needed for a correct description of hadronic interactions. For elementary reactions, angular distribution models for selected channels are already part of the framework, based on parameterizations of existing data. This report gives an overview of the design of the package, the included models and the user interface
3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm
Positron emission tomographs (PET) do not measure an image directly. Instead,
they measure at the boundary of the field-of-view (FOV) of PET tomograph a
sinogram that consists of measurements of the sums of all the counts along the
lines connecting two detectors. As there is a multitude of detectors build-in
typical PET tomograph structure, there are many possible detector pairs that
pertain to the measurement. The problem is how to turn this measurement into an
image (this is called imaging). Decisive improvement in PET image quality was
reached with the introduction of iterative reconstruction techniques. This
stage was reached already twenty years ago (with the advent of new powerful
computing processors). However, three dimensional (3D) imaging remains still a
challenge. The purpose of the image reconstruction algorithm is to process this
imperfect count data for a large number (many millions) of lines-of-responce
(LOR) and millions of detected photons to produce an image showing the
distribution of the labeled molecules in space.Comment: 10 pages, 7 figure
TOF-PET detector concept based on organic scintillators
In this contribution we present a new concept of the large acceptance detector systems based on organic scintillators which may allow for simultaneous diagnostic of large fraction of the human body. Novelty of the concept lies in employing large blocks of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes
Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument
Nowadays, in positron emission tomography (PET) systems, a time of fl ight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten signifi cantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta
Plastic scintillators for positron emission tomography obtained by the bulk polymerization method
This paper describes three methods regarding the production of plastic
scintillators. One method appears to be suitable for the manufacturing of
plastic scintillator, revealing properties which fulfill the requirements of
novel positron emission tomography scanners based on plastic scintillators. The
key parameters of the manufacturing process are determined and discussed.Comment: 7 pages, 4 figure
Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package
Novel Positron Emission Tomography system, based on plastic scintillators, is developed by the J-PET collaboration. In order to optimize geometrical configuration of built device, advanced computer simulations are performed. Detailed study is presented of background given by accidental coincidences and multiple scattering of gamma quanta
Verification of electromagnetic calorimeter concept for the HADES spectrometer
The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail
- …