9,327 research outputs found

    Identifying cross country skiing techniques using power meters in ski poles

    Get PDF
    Power meters are becoming a widely used tool for measuring training and racing effort in cycling, and are now spreading also to other sports. This means that increasing volumes of data can be collected from athletes, with the aim of helping coaches and athletes analyse and understanding training load, racing efforts, technique etc. In this project, we have collaborated with Skisens AB, a company producing handles for cross country ski poles equipped with power meters. We have conducted a pilot study in the use of machine learning techniques on data from Skisens poles to identify which "gear" a skier is using (double poling or gears 2-4 in skating), based only on the sensor data from the ski poles. The dataset for this pilot study contained labelled time-series data from three individual skiers using four different gears recorded in varied locations and varied terrain. We systematically evaluated a number of machine learning techniques based on neural networks with best results obtained by a LSTM network (accuracy of 95% correctly classified strokes), when a subset of data from all three skiers was used for training. As expected, accuracy dropped to 78% when the model was trained on data from only two skiers and tested on the third. To achieve better generalisation to individuals not appearing in the training set more data is required, which is ongoing work.Comment: Presented at the Norwegian Artificial Intelligence Symposium 201

    Flavor Neutrino Oscillations and Time-Energy Uncertainty Relation

    Full text link
    We consider neutrino oscillations as non stationary phenomenon based on Schrodinger evolution equation and mixed states of neutrinos with definite flavors. We show that time-energy uncertainty relation plays a crucial role in neutrino oscillations. We compare neutrino oscillations with Bd0Bˉd0B_{d}^{0}\leftrightarrows\bar B_{d}^{0} oscillations.Comment: A report at the 2nd Scandinavian Neutrino Workshop, SNOW 2006, Stockholm, May 2-6, 200

    The role of the lattice structure in determining the magnon-mediated interactions between charge carriers doped into a magnetically ordered background

    Full text link
    We use two recently proposed methods to calculate exactly the spectrum of two spin-12{1\over 2} charge carriers moving in a ferromagnetic background, at zero temperature, for three types of models. By comparing the low-energy states in both the one-carrier and the two-carrier sectors, we analyze whether complex models with multiple sublattices can be accurately described by simpler Hamiltonians, such as one-band models. We find that while this is possible in the one-particle sector, the magnon-mediated interactions which are key to properly describe the two-carrier states of the complex model are not reproduced by the simpler models. We argue that this is true not just for ferromagnetic, but also for antiferromagnetic backgrounds. Our results question the ability of simple one-band models to accurately describe the low-energy physics of cuprate layers.Comment: 15 pages, 10 figure

    Coherent pion production by neutrinos on nuclei

    Full text link
    The main part of coherent pion production by neutrinos on nuclei is essentially determined by PCAC, provided that the leptonic momentum transferred square Q^2 remains sufficiently small. We give the formulas for the charged and neutral current cross sections, including also the small non-PCAC transverse current contributions and taking into account the effect of the \mu^- mass. Our results are compared with the experimental ones and other theoretical treatments.Comment: 18 pages, 4 figure

    Enhancement of Blackbody Friction due to the Finite Lifetime of Atomic Levels

    Full text link
    The thermal friction force acting on an atom moving relative to a thermal photon bath is known to be proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole) polarizability. Using a numerical approach, we find that blackbody friction on atoms either in dilute environments or in hot ovens is larger than previously thought by orders of magnitude. This enhancement is due to far off-resonant driving of transitions by low-frequency thermal radiation. At typical temperatures, the blackbody radiation maximum lies far below the atomic transition wavelengths. Surprisingly, due to the finite lifetime of atomic levels, which gives rise to Lorentzian line profiles, far off-resonant excitation leads to the dominant contribution to the blackbody friction.Comment: 4 pages; RevTe

    The hbar Expansion in Quantum Field Theory

    Full text link
    We show how expansions in powers of Planck's constant hbar = h/2\pi can give new insights into perturbative and nonperturbative properties of quantum field theories. Since hbar is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the hbar expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of hbar. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of hbar, then each loop in perturbation theory brings a factor of hbar. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in hbar. The connection between the number of loops and factors of hbar is more subtle for bound states since the binding energies and bound-state momenta themselves scale with hbar. The hbar expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in hbar and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.Comment: 8 pages, 1 figure. Version to be published in Phys. Rev.

    Path integrals and wavepacket evolution for damped mechanical systems

    Full text link
    Damped mechanical systems with various forms of damping are quantized using the path integral formalism. In particular, we obtain the path integral kernel for the linearly damped harmonic oscillator and a particle in a uniform gravitational field with linearly or quadratically damped motion. In each case, we study the evolution of Gaussian wavepackets and discuss the characteristic features that help us distinguish between different types of damping. For quadratic damping, we show that the action and equation of motion of such a system has a connection with the zero dimensional version of a currently popular scalar field theory. Furthermore we demonstrate that the equation of motion (for quadratic damping) can be identified as a geodesic equation in a fictitious two-dimensional space.Comment: 15 pages, 6 figure

    Hardy's argument and successive spin-s measurements

    Full text link
    We consider a hidden-variable theoretic description of successive measurements of non commuting spin observables on a input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is (12)4s(\frac{1}{2})^{4s}, which is more than in the spatial case.Comment: 7 page

    Non-relativistic electron-electron interaction in a Maxwell-Chern-Simons-Proca model endowed with a timelike Lorentz-violating background

    Full text link
    A planar Maxwell-Chern-Simons-Proca model endowed with a Lorentz-violating background is taken as framework to investigate the electron-electron interaction. The Dirac sector is introduced exhibiting a Yukawa and a minimal coupling with the scalar and the gauge fields, respectively. The the electron-electron interaction is then exactly evaluated as the Fourier transform of the Moller scattering amplitude (carried out in the non-relativistic limit) for the case of a purely time-like background. The interaction potential exhibits a totally screened behavior far from the origin as consequence of massive character of the physical mediators. The total interaction (scalar plus gauge potential) can always be attractive, revealing that this model may lead to the formation of electron-electron bound states.Comment: 14 pages, 4 figures, style revtex. To appear in International Journal Modern Physics
    corecore