4,536 research outputs found
Viscoelastic evaluation of biological soft tissue in crush process at subsonic level for anti-bird strike technology of airplane
Miniaturization and lightening of airplane are advanced to improve its economic efficiency, and the safety technology of airplane design becomes difficult while the accident of bird-strike is increasing year by year. Then a system of shock impact test by using airsoft rifle is developed to evaluate the design technology of anti-bird strike structure of airplane. The viscoelastic characteristics of specimen is evaluated by analyzing stress response using the modified Hertz contact theory and the wave equation at the moment when simple ball bullet is shot to specimen by the airsoft rifle. In the results of experiment, the obvious relationship is observed subjectively between quasi-static and impact responses of specimen. The evaluated viscoelastic relationship is applied to simulate the impact test by using LSDYNA with fundamental viscoelastic constitutive equation and the material parameters derived from the impact test, and the well similar behavior has been simulated by the constitutive equation. By using the developed technology here, the phantom imitating real bird will be developed as standard specimen for an anti-bird strike test in future
GW approximation with self-screening correction
The \emph{GW} approximation takes into account electrostatic self-interaction
contained in the Hartree potential through the exchange potential. However, it
has been known for a long time that the approximation contains self-screening
error as evident in the case of the hydrogen atom. When applied to the hydrogen
atom, the \emph{GW} approximation does not yield the exact result for the
electron removal spectra because of the presence of self-screening: the hole
left behind is erroneously screened by the only electron in the system which is
no longer present. We present a scheme to take into account self-screening and
show that the removal of self-screening is equivalent to including exchange
diagrams, as far as self-screening is concerned. The scheme is tested on a
model hydrogen dimer and it is shown that the scheme yields the exact result to
second order in where and are respectively
the onsite and offsite Hubbard interaction parameters and the hopping
parameter.Comment: 9 pages, 2 figures; Submitted to Phys. Rev.
MUSCLE ARCHITECTURE AND THE RATIO OF JOINT TORQUE TO MUSCLE VOLUME OF TRICEPS SURAE MUSCLES IN YOUNG MEN AND WOMEN
INTRODUCTION: Muscle volume is a major determinant of joint torque (Fukunaga et al., 2001). However, it is not clear whether there are gender-differences in a relationship between joint torque and muscle volume. It is not clear also about muscle architecture, e.g., physiological cross-sectional area (PCSA) and fascicle length. We aim to compare 1) muscle architecture under the maximal voluntary contraction condition and muscle volume (MVTS) of the triceps surae muscles (TS), and 2) the relationship between MVC and MVTS, for young men and women
FORCE-LENGTH RELATIONSHIPS OF HUMAN GASTROCNEMIUS AND SOLEUS MUSCLES IN VIVO
INTRODUCTION: Synergistic muscle have different architecture, and therefore could have different force-length relationships for the same joint angle changes. Previous studies have failed to reveal the force-length relationships of synergistic muscles. The purpose of this study was to investigate the force-length relationships of the triceps surae muscles for humans in vivo
Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion
Making use of droplet epitaxy, we systematically controlled the height of
self-assembled GaAs quantum dots by more than one order of magnitude. The
photoluminescence spectra of single quantum dots revealed the strong dependence
of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm
showed broad spectral peaks with an average width as large as ~5 meV, but
shallow dots with a height of ~2 nm showed resolution-limited spectral lines
(<120 micro eV). The measured height dependence of the linewidths is in good
agreement with Stark coefficients calculated for the experimental shape
variation. We attribute the microscopic source of fluctuating electric fields
to the random motion of surface charges at the vacuum-semiconductor interface.
Our results offer guidelines for creating frequency-locked photon sources,
which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description
- …