205 research outputs found

    Monte Carlo study of particle production in diffractive proton-proton collisions at s\sqrt s = 13 TeV with the very forward detector combined with central information

    Full text link
    Very forward (VF) detectors in hadron colliders, having unique sensitivity to diffractive processes, can be a powerful tool for studying diffractive dissociation by combining them with central detectors. Several Monte Carlo simulation samples in pp-pp collisions at s=13\sqrt s = 13 TeV were analyzed, and different nondiffractive and diffractive contributions were clarified through differential cross sections of forward neutral particles. Diffraction selection criteria in the VF-triggered-event samples were determined by using the central track information. The corresponding selection applicable in real experiments has \approx100% purity and 30%-70% efficiency. Consequently, the central information enables classification of the forward productions into diffraction and nondiffraction categories; in particular, most of the surviving events from the selection belong to low-mass diffraction events at log10(ξx)<5.5\log_{10}(\xi_{x}) < -5.5. Therefore, the combined method can uniquely access the low-mass diffraction regime experimentally.Comment: 10 pages, 16 figures, 1table

    Physical Relation of Source I to IRc2 in the Orion KL Region

    Full text link
    We present mid-infrared narrow-band images of the Orion BN/KL region, and N-band low-resolution spectra of IRc2 and the nearby radio source "I." The distributions of the silicate absorption strength and the color temperature have been revealed with a sub-arcsecond resolution. The detailed structure of the 7.8 micron/12.4 micron color temperature distribution was resolved in the vicinity of IRc2. A mid-infrared counterpart to source I has been detected as a large color temperature peak. The color temperature distribution shows an increasing gradient from IRc2 toward source I, and no dominant temperature peak is seen at IRc2. The spectral energy distribution of IRc2 could be fitted by a two-temperature component model, and the "warmer component" of the infrared emission from IRc2 could be reproduced by scattering of radiation from source I. IRc2 itself is not self-luminous, but is illuminated and heated by an embedded luminous young stellar object located at source I.Comment: 20 pages, 11 figures. Minor corrections had been done in the ver.2. Accepted for publication in PAS

    Effects of galactic magnetic field on the UHECR correlation studies with starburst galaxies

    Full text link
    We estimate the biases caused by the coherent deflection of cosmic rays due to the Galactic magnetic field (GMF) in maximum-likelihood analysis for searches of ultrahigh-energy cosmic ray (UHECR) sources in the literature. We simulate mock event datasets with a set of assumptions for the starburst galaxy (SBG) source model (arXiv:1801.06160), coherent deflection by a GMF model (arXiv:1204.3662,arXiv:1210.7820), and mixed-mass composition (arXiv:1901.03338); we then conduct a maximum-likelihood analysis without accounting for the GMF in the same manner as previous studies. We find that the anisotropic fraction fanif_{\rm ani} is estimated systematically lower than the true value. We estimate the true parameters which are compatible with the best-fit parameters reported in (arXiv:1801.06160), and find that except for a narrow region with a large anisotropic fraction and small separation angular scale a wide parameter space is still compatible with the experimental results. We also develop a maximum-likelihood method that takes into account the GMF model and confirm in the MC simulations that we can estimate the true parameters within a 1σ\sigma contour under the ideal condition that we know the event-by-event mass and the GMF

    Origin of diverse phosphorylation patterns in the ERBB system

    Get PDF
    シグナル伝達による多様な細胞応答の起源 --実験と理論の融合による反応特性の決定. 京都大学プレスリリース. 2022-01-21.Intercellular signals induce various cellular responses, including growth, proliferation, and differentiation, via the dynamic processes of signal transduction pathways. For cell fate decisions, ligand-binding induces the phosphorylation of ERBB receptors, which in turn activate downstream molecules. The ERBB family includes four subtypes, which diverged through two gene duplications from a common ancestor. Differences in the expression patterns of the subtypes have been reported between different organs in the human body. However, how these different expression properties influence the diverse phosphorylation levels of ERBB proteins is not well understood. Here we study the origin of the phosphorylation responses by experimental and mathematical analyses. The experimental measurements clarified that the phosphorylation levels heavily depend on the ERBB expression profiles. We developed a mathematical model consisting of the four subtypes as monomers, homodimers, and heterodimers and estimated the rate constants governing the phosphorylation responses from the experimental data. To understand the origin of the diversity, we analyzed the effects of the expression levels and reaction rates of the ERBB subtypes on the diversity. The difference in phosphorylation rates between ERBB subtypes showed a much greater contribution to the diversity than did the dimerization rates. This result implies that divergent evolution in phosphorylation reactions rather than in dimerization reactions after whole genome duplications was essential for increasing the diversity of the phosphorylation responses
    corecore