250 research outputs found

    Annihilation Diagrams in Two-Body Nonleptonic Decays of Charmed Mesons

    Full text link
    In the pole-dominance model for the two-body nonleptonic decays of charmed mesons DPVD \rightarrow PV and DVVD \rightarrow VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the DPPD \rightarrow PP decays vanish independently.Comment: 9 pages (+ 3 figures available upon request), UR-1316, ER-40685-766, IC/93/21

    Bulk and edge excitations of a ν=1\nu =1 Hall ferromagnet

    Full text link
    In this article, we shall focus on the collective dynamics of the fermions in a ν=1\nu = 1 quantum Hall droplet. Specifically, we propose to look at the quantum Hall ferromagnet. In this system, the electron spins are ordered in the ground state due to the exchange part of the Coulomb interaction and the Pauli exclusion principle. The low energy excitations are ferromagnetic magnons. In order to obtain an effective Lagrangian for these magnons, we shall introduce bosonic collective coordinates in the Hilbert space of many-fermion systems. These collective coordinates describe a part of the fermionic Hilbert space. Using this technique, we shall interpret the magnons as bosonic collective excitations in the Hilbert space of the many-electron Hall system. Furthermore, by considering a Hall droplet of finite extent, we shall also obtain the effective Lagrangian governing the spin collective excitations at the edge of the sample.Comment: 30 pages, plain TeX, no figure

    Superfluid to Mott insulator transition in the one-dimensional Bose-Hubbard model for arbitrary integer filling factors

    Full text link
    We study the quantum phase transition between the superfluid and the Mott insulator in the one-dimensional (1D) Bose-Hubbard model. Using the time-evolving block decimation method, we numerically calculate the tunneling splitting of two macroscopically distinct states with different winding numbers. From the scaling of the tunneling splitting with respect to the system size, we determine the critical point of the superfluid to Mott insulator transition for arbitrary integer filling factors. We find that the critical values versus the filling factor in 1D, 2D, and 3D are well approximated by a simple analytical function. We also discuss the condition for determining the transition point from a perspective of the instanton method.Comment: 6 pages, 6 figures, 2 table

    Accurate numerical verification of the instanton method for macroscopic quantum tunneling: dynamics of phase slips

    Full text link
    Instanton methods, in which imaginary-time evolution gives the tunneling rate, have been widely used for studying quantum tunneling in various contexts. Nevertheless, how accurate instanton methods are for the problems of macroscopic quantum tunneling (MQT) still remains unclear because of lack of their direct comparison with exact time evolution of the many-body Schroedinger equation. Here, we verify instanton methods applied to coherent MQT. Specifically applying the quasi-exact numerical method of time-evolving block decimation to the system of bosons in a ring lattice, we directly simulate the real-time quantum dynamics of supercurrents, where a coherent oscillation between two macroscopically distinct current states occurs due to MQT. The tunneling rate extracted from the coherent oscillation is compared with that given by the instanton method. We show that the error is within 10% when the effective Planck's constant is sufficiently small. We also discuss phase slip dynamics associated with the coherent oscillations.Comment: 19 pages, 14 figures, 1 tabl

    Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    Get PDF
    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n=16) and normal (n=15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUCDCI-IPG), AUCinsulin, and AUCDCI-IPG/AUCinsulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUCDCI-IPG/AUCinsulin at baseline and a significant relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0003), which was not present in controls. Weight loss was similar between PCOS (−4.08 kg) and normal women (−4.29 kg, p=0.6281). Weight loss in PCOS women did not change the relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0100), and this relationship remained absent in control women. Conclusion. The association between AUCDCI-IPG/AUCinsulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte

    Quantum phase slips in one-dimensional superfluids in a periodic potential

    Full text link
    We study the decay of superflow of a one-dimensional (1D) superfluid in the presence of a periodic potential. In 1D, superflow at zero temperature can decay via quantum nucleation of phase slips even when the flow velocity is much smaller than the critical velocity predicted by mean-field theories. Applying the instanton method to the O(2) quantum rotor model, we calculate the nucleation rate of quantum phase slips Γ\Gamma. When the flow momentum pp is small, we find that the nucleation rate per unit length increases algebraically with pp as Γ/Lp2K2\Gamma/L \propto p^{2K-2}, where LL is the system size and KK is the Tomonaga-Luttinger parameter. Based on the relation between the nucleation rate and the quantum superfluid-insulator transition, we present a unified explanation on the scaling formulae of the nucleation rate for periodic, disorder, and single-barrier potentials. Using the time-evolving block decimation method, we compute the exact quantum dynamics of the superflow decay in the 1D Bose-Hubbard model at unit filling. From the numerical analyses, we show that the scaling formula is valid for the case of the Bose-Hubbard model, which can quantitatively describe Bose gases in optical lattices.Comment: 11 pages, 8 figures, Sec. V is adde

    Asymmetry Parameter of Λ Decay and the Intermediate Boson of Weak Interactions

    Get PDF
    The magnitude of the pion asymmetry parameter α- of the Λ → p + π- decay has been determinted [1] to be greater than or equal to (0.73 ± 0.14). The sign of this parameter, however, is rather hard to find. The results of Boldt et al. [2] anf the preliminary results of Birge and Fowler [3] indicated a positive sign for α-. Recently, however, Birge and Fowler [4] have reported a negative sign for α-, contrary to their own preliminary [3] results. In this Letter we wish to point out that the negative sign of α-, provides a favorable argument for the conjecture that the V-A four-fermion interaction may be mediated by a vector boson

    Field Theory On The World Sheet: Improvements And Generalizations

    Full text link
    This article is the continuation of a project of investigating planar phi^3 model in various dimensions. The idea is to reformulate them on the world sheet, and then to apply the classical (meanfield) approximation, with two goals: To show that the ground state of the model is a solitonic configuration on the world sheet, and the quantum fluctuations around the soliton lead to the formation of a transverse string. After a review of some of the earlier work, we introduce and discuss several generalizations and new results. In 1+2 dimensions, a rigorous upper bound on the solitonic energy is established. A phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and 1+5 dimensions, an improved treatment of the ultraviolet divergences is given. And significantly, we show that our approximation scheme can be imbedded into a systematic strong coupling expansion. Finally, the spectrum of quantum fluctuations around the soliton confirms earlier results: In 1+2 and 1+3 dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are corrected, a comment added to section
    corecore