6 research outputs found
Glutamatergic neurometabolite levels in the caudate are associated with the ability of rhythm production
IntroductionGlutamatergic neurometabolites play important roles in the basal ganglia, a hub of the brain networks involved in musical rhythm processing. We aimed to investigate the relationship between rhythm processing abilities and glutamatergic neurometabolites in the caudate.MethodsWe aquired Glutamatergic function in healthy individuals employing proton magnetic resonance spectroscopy. We targeted the right caudate and the dorsal anterior cingulate cortex (dACC) as a control region. Rhythm processing ability was assessed by the Harvard Beat Assessment Test (H-BAT).ResultsWe found negative correlations between the production part of the Beat Saliency Test in the H-BAT and glutamate and glutamine levels in the caudate (r = −0.693, p = 0.002) whereas there was no such association in the dACC.ConclusionThese results suggest that higher glutamatergic neurometabolite levels in the caudate may contribute to rhythm processing, especially the ability to produce meter in music precisely
Early improvements of individual symptoms as a predictor of treatment response to asenapine in patients with schizophrenia
Abstract Aim It is well accepted that early improvement with antipsychotics predicts subsequent response in patients with schizophrenia. However, no study has examined the contribution of individual symptoms rather than overall symptom severity as the predictors. Thus, we aimed to detect individual symptoms whose improvements could predict subsequent response in patients with schizophrenia during treatment with asenapine and examine whether a prediction model with individual symptoms would be superior to a model using overall symptom severity. Methods This study analyzed a dataset including 532 patients with schizophrenia enrolled in a 6‐week double‐blind, placebo‐controlled, randomized trial of asenapine. Response to asenapine was defined as a ≥30% decrease in Positive and Negative Syndrome Scale (PANSS) total score from baseline to week 6. Stepwise logistic regression analyses were performed to investigate the associations among response and PANSS total/individual item score improvements at week 1 or week 2. Results Response was associated with early improvement in the following PANSS items: disturbance of volition, active social avoidance, poor impulse control at week 1; and active social avoidance, poor attention, lack of judgment and insight at week 2. Prediction accuracy was almost compatible between the model with individual symptoms and the model with PANSS total score both at weeks 1 and 2 (Nagelkerke R2: .51, .42 and .55, .54, respectively). Conclusion Early improvement in negative symptoms, poor attention and impulse control, and lack of insight, in particular predicted subsequent treatment response in patients with schizophrenia during treatment with asenapine as accurately as prediction based on overall symptom severity
Resting-State Isolated Effective Connectivity of the Cingulate Cortex as a Neurophysiological Biomarker in Patients with Severe Treatment-Resistant Schizophrenia
Background: The neural basis of treatment-resistant schizophrenia (TRS) remains unclear. Previous neuroimaging studies suggest that aberrant connectivity between the anterior cingulate cortex (ACC) and default mode network (DMN) may play a key role in the pathophysiology of TRS. Thus, we aimed to examine the connectivity between the ACC and posterior cingulate cortex (PCC), a hub of the DMN, computing isolated effective coherence (iCoh), which represents causal effective connectivity. Methods: Resting-state electroencephalogram with 19 channels was acquired from seventeen patients with TRS and thirty patients with non-TRS (nTRS). The iCoh values between the PCC and ACC were calculated using sLORETA software. We conducted four-way analyses of variance (ANOVAs) for iCoh values with group as a between-subject factor and frequency, directionality, and laterality as within-subject factors and post-hoc independent t-tests. Results: The ANOVA and post-hoc t-tests for the iCoh ratio of directionality from PCC to ACC showed significant findings in delta (t45 = 7.659, p = 0.008) and theta (t45 = 8.066, p = 0.007) bands in the left side (TRS < nTRS). Conclusion: Left delta and theta PCC and ACC iCoh ratio may represent a neurophysiological basis of TRS. Given the preliminary nature of this study, these results warrant further study to confirm the importance of iCoh as a clinical indicator for treatment-resistance