19 research outputs found

    Preparation, Characterization and electronic structure of Ti-doped Bi2_2Se3_3

    Full text link
    We report the preparation of high-quality single crystal of Bi2_2Se3_3, a well-known topological insulator and its Ti-doped compositions using Bridgeman technique. Prepared single crystals were characterized by x-ray diffraction (XRD) to check the crystalline structure and energy dispersive analysis of x-rays for composition analysis. The XRD data of Ti-doped compounds show a small shift with respect to normal Bi2_2Se3_3 indicating changes in the lattice parameters while the structure type remained unchanged; this also establishes that Ti goes to the intended substitution sites. All the above analysis establishes successful preparation of these crystals with high quality using Bridgman technique. We carried out x-ray photo-emission spectroscopy to study the composition via investigating the core level spectra. Bi2_2Se3_3 spectra exhibit sharp and distinct features for the core levels and absence of impurity features. The core level spectra of the Ti-doped sample exhibit distinct signal due to Ti core levels. The analysis of the spectral features reveal signature of plasmon excitation and final state satellites; a signature of finite electron correlation effect in the electronic structure.Comment: Proceedings of DAE SSPS 201

    Observation of gapless nodal-line states in NdSbTe

    Full text link
    Lanthanide (Ln) based systems in the ZrSiS-type nodal-line semimetals have been subjects of research investigations as grounds for studying the interplay of topology with possible magnetic ordering and electronic correlations that may originate from the presence of Ln 4f electrons. In this study, we carried out a thorough study of a LnSbTe system - NdSbTe - by using angle-resolved photoemission spectroscopy along with first-principles calculations and thermodynamic measurements. We experimentally detect the presence of multiple gapless nodal-line states, which is well supported by first-principles calculations. A dispersive and an almost non-dispersive nodal-line exist along the bulk X-R direction. Another nodal-line is present well below the Fermi level across the G- M direction, which is formed by bands with high Fermi velocity that seem to be sensitive to light polarization. Our study provides an insight into the electronic structure of a new LnSbTe material system that will aid towards understanding the connection of Ln elements with topological electronic structure in these systems.Comment: 34 pages, 12 figures; Supplemental Material include

    Observation of multiple van Hove singularities and correlated electronic states in a new topological ferromagnetic kagome metal NdTi3Bi4

    Full text link
    Kagome materials have attracted enormous research interest recently owing to its diverse topological phases and manifestation of electronic correlation due to its inherent geometric frustration. Here, we report the electronic structure of a new distorted kagome metal NdTi3Bi4 using a combination of angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations. We discover the presence of two at bands which are found to originate from the kagome structure formed by Ti atoms with major contribution from Ti dxy and Ti dx2-y2 orbitals. We also observed multiple van Hove singularities (VHSs) in its electronic structure, with one VHS lying near the Fermi level EF. In addition, the presence of a surface Dirac cone at the G point and a linear Dirac-like state at the K point with its Dirac node lying very close to the EF indicates its topological nature. Our findings reveal NdTi3Bi4 as a potential material to understand the interplay of topology, magnetism, and electron correlation.Comment: 7 pages, 4 figure

    Observation of multiple flat bands and topological Dirac states in a new titanium based slightly distorted kagome metal YbTi3Bi4

    Full text link
    Kagome lattices have emerged as an ideal platform for exploring various exotic quantum phenomena such as correlated topological phases, frustrated lattice geometry, unconventional charge density wave orders, Chern quantum phases, superconductivity, etc. In particular, the vanadium based nonmagnetic kagome metals AV3Sb5 (A= K, Rb, and Cs) have seen a flurry of research interest due to the discovery of multiple competing orders. Here, we report the discovery of a new Ti based kagome metal YbTi3Bi4 and employ angle-resolved photoemission spectroscopy (ARPES), magnetotransport in combination with density functional theory calculations to investigate its electronic structure. We reveal spectroscopic evidence of multiple flat bands arising from the kagome lattice of Ti with predominant Ti 3d character. Through our calculations of the Z2 indices, we have identified that the system exhibits topological nontriviality with surface Dirac cones at the Gamma point and a quasi two-dimensional Dirac state at the K point which is further confirmed by our ARPES measured band dispersion. These results establish YbTi3Bi4 as a novel platform for exploring the intersection of nontrivial topology, and electron correlation effects in this newly discovered Ti based kagome lattice.Comment: 8 pages, 5 figure

    Observation of anisotropic Dirac cones in the topological material Ti2Te2P

    Full text link
    Anisotropic bulk Dirac (or Weyl) cones in three dimensional systems have recently gained intense research interest as they are examples of materials with tilted Dirac (or Weyl) cones indicatig the violation of Lorentz invariance. In contrast, the studies on anisotropic surface Dirac cones in topological materials which contribute to anisotropic carrier mobility have been limited. By employing angle-resolved photoemission spectroscopy and first-principles calculations, we reveal the anisotropic surface Dirac dispersion in a tetradymite material Ti2Te2P on the (001) plane of the Brillioun zone. We observe the quasi-elliptical Fermi pockets at the M -point of the Brillouin zone forming the anisotropic surface Dirac cones. Our calculations of the Z2 indices confirm that the system is topologically non-trivial with multiple topological phases in the same material. In addition, the observed nodal-line like feature formed by bulk bands makes this system topologically rich.Comment: 21 pages, 17 figures, Supplementary Information include

    Unusual magnetic and transport properties in HoMn6_6Sn6_6 kagome magnet

    Full text link
    With intricate lattice structures, kagome materials are an excellent platform to study various fascinating topological quantum states. In particular, kagome materials, revealing large responses to external stimuli such as pressure or magnetic field, are subject to special investigation. Here, we study the kagome-net HoMn6_6Sn6_6 magnet that undergoes paramagnetic to ferrimagnetic transition (below 376 K) and reveals spin-reorientation transition below 200 K. In this compound, we observe the topological Hall effect and substantial contribution of anomalous Hall effect above 100 K. We unveil the pressure effects on magnetic ordering at a low magnetic field from the pressure tunable magnetization measurement. By utilizing high-resolution angle-resolved photoemission spectroscopy, Dirac-like dispersion at the high-symmetry point K is revealed in the vicinity of the Fermi level, which is well supported by the first-principles calculations, suggesting a possible Chern-gapped Dirac cone in this compound. Our investigation will pave the way to understand the magneto-transport and electronic properties of various rare-earth-based kagome magnets
    corecore