1,633 research outputs found

    Hardness of Finding Independent Sets in 2-Colorable Hypergraphs and of Satisfiable CSPs

    Full text link
    This work revisits the PCP Verifiers used in the works of Hastad [Has01], Guruswami et al.[GHS02], Holmerin[Hol02] and Guruswami[Gur00] for satisfiable Max-E3-SAT and Max-Ek-Set-Splitting, and independent set in 2-colorable 4-uniform hypergraphs. We provide simpler and more efficient PCP Verifiers to prove the following improved hardness results: Assuming that NP\not\subseteq DTIME(N^{O(loglog N)}), There is no polynomial time algorithm that, given an n-vertex 2-colorable 4-uniform hypergraph, finds an independent set of n/(log n)^c vertices, for some constant c > 0. There is no polynomial time algorithm that satisfies 7/8 + 1/(log n)^c fraction of the clauses of a satisfiable Max-E3-SAT instance of size n, for some constant c > 0. For any fixed k >= 4, there is no polynomial time algorithm that finds a partition splitting (1 - 2^{-k+1}) + 1/(log n)^c fraction of the k-sets of a satisfiable Max-Ek-Set-Splitting instance of size n, for some constant c > 0. Our hardness factor for independent set in 2-colorable 4-uniform hypergraphs is an exponential improvement over the previous results of Guruswami et al.[GHS02] and Holmerin[Hol02]. Similarly, our inapproximability of (log n)^{-c} beyond the random assignment threshold for Max-E3-SAT and Max-Ek-Set-Splitting is an exponential improvement over the previous bounds proved in [Has01], [Hol02] and [Gur00]. The PCP Verifiers used in our results avoid the use of a variable bias parameter used in previous works, which leads to the improved hardness thresholds in addition to simplifying the analysis substantially. Apart from standard techniques from Fourier Analysis, for the first mentioned result we use a mixing estimate of Markov Chains based on uniform reverse hypercontractivity over general product spaces from the work of Mossel et al.[MOS13].Comment: 23 Page

    A PTAS for the Classical Ising Spin Glass Problem on the Chimera Graph Structure

    Full text link
    We present a polynomial time approximation scheme (PTAS) for the minimum value of the classical Ising Hamiltonian with linear terms on the Chimera graph structure as defined in the recent work of McGeoch and Wang. The result follows from a direct application of the techniques used by Bansal, Bravyi and Terhal who gave a PTAS for the same problem on planar and, in particular, grid graphs. We also show that on Chimera graphs, the trivial lower bound is within a constant factor of the optimum.Comment: 6 pages, corrected PTAS running tim

    Work in progress: a quantitative study of effectiveness in group learning

    Get PDF
    It is generally assumed that group studies are more effective for students than individual studies. The objective of this work in progress is to quantitatively evaluate and analyze the effect of collaborative studies on individual student’s performance. This effort would help the student stimulate interest in group learning and collaboration along with exposing them towards multiple problem solving approaches while working individually or in groups. This way the students are challenged to use their existing knowledge and approach, and augment it further with the knowledge and approach provided by group partners. While there are several efforts that focus on developing new group learning techniques, we intend to study the efficacy of previously proposed techniques under various test settings for EE and CS courses without significantly diverting from the course framework
    • …
    corecore