148 research outputs found

    Dynamical Electroweak Symmetry Breaking in SO(5)xU(1) Gauge-Higgs Unification with Top and Bottom Quarks

    Full text link
    An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermions from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (\sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out \pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.Comment: 35 pages, 2 figures. A few corrections are mad

    Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime

    Full text link
    In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10−810^{-8}, 10−610^{-6} and 10−210^{-2} for μ\mu-ee, τ\tau-ee and tt-ee, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor |\cos \onehalf \theta_W| where θW\theta_W is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.Comment: 34 pages, 7 eps files, comments and a reference adde

    Effective theories of gauge-Higgs unification models in warped spacetime

    Full text link
    We derive four-dimensional (4D) effective theories of the gauge-Higgs unification models in the warped spacetime. The effective action can be expressed in a simple form by neglecting subleading corrections to the wave functions. We have shown in our previous works that some Higgs couplings to the other fields are suppressed by factors that depend on θˉH\bar{\theta}_H from the values in the standard model. Here θˉH\bar{\theta}_H is the Wilson line phase along the fifth dimension, which characterizes the electroweak symmetry breaking. The effective action derived here explicitly shows a nonlinear structure of the Higgs sector, which clarifies the origins of those suppression factors.Comment: 36 pages, 1 figur

    Geometric Origin of CP Violation in an Extra-Dimensional Brane World

    Get PDF
    The fermion mass hierarchy and finding a predictive mechanism of the flavor mixing parameters remain two of the least understood puzzles facing particle physics today. In this work, we demonstrate how the realization of the Dirac algebra in the presence of two extra spatial dimensions leads to complex fermion field profiles in the extra dimensions. Dimensionally reducing to four dimensions leads to complex quark mass matrices in such a fashion that CP violation necessarily follows. We also present the generalization of the Randall-Sundrum scenario to the case of a multi-brane, six-dimensional brane-world and discuss how multi-brane worlds may shed light on the generation index of the SM matter content.Comment: 24 pages, 1 figure; references adde

    Modified mode-expansion on a BPS wall related to the nonlinear realization

    Get PDF
    We propose a modified mode-expansion of the bulk fields in a BPS domain wall background to obtain the effective theory on the wall. The broken SUSY is nonlinearly realized on each mode defined by our mode-expansion. Our work clarifies a relation between two different approaches to derive the effective theory on a BPS wall, {\it i.e.} the nonlinear realization approach and the mode-expansion approach. We also discuss a further modification that respects the Lorentz and U(1)RU(1)_R symmetries broken by the wall.Comment: LaTeX file, 21 pages, no figure

    Effective theory for wall-antiwall system

    Full text link
    We propose a useful method for deriving the effective theory for a system where BPS and anti-BPS domain walls coexist. Our method respects an approximately preserved SUSY near each wall. Due to the finite width of the walls, SUSY breaking terms arise at tree-level, which are exponentially suppressed. A practical approximation using the BPS wall solutions is also discussed. We show that a tachyonic mode appears in the matter sector if the corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde

    Superfield description of 5D supergravity on general warped geometry

    Full text link
    We provide a systematic and practical method of deriving 5D supergravity action described by 4D superfields on a general warped geometry, including a non-BPS background. Our method is based on the superconformal formulation of 5D supergravity, but is easy to handle thanks to the superfield formalism. We identify the radion superfield in the language of 5D superconformal gravity, and clarify its appearance in the action. We also discuss SUSY breaking effects induced by a deformed geometry due to the backreaction of the radius stabilizer.Comment: 25 pages, no figures, LaTeX, final version to appear in JHE
    • …
    corecore