68 research outputs found

    Determination of acid dissociation constants of flavin analogues by capillary zone electrophoresis

    Get PDF
    Acid dissociation constants (pKa) of 9 kinds of flavin analogues as molecular catalyst candidates were determined by CZE. Although some of the analogues are instable and degradable under the light-exposure or in alkaline aqueous solutions, the effective electrophoretic mobility of the flavin analogue of interest has been measured with the residual substance. The pKa values of the flavin analogues were analyzed through the changes in the effective electrophoretic mobility with varying pH of the separation buffer. One or two steps pKa values were determined by the analysis. One of the degraded species from the flavin analogues, lumichrome, was also detected in the CZE analysis, and its pKa values were also determined. While coexisting impurities generated over the storage conditions were found in some analogues, the pKa values of the target analogues were successfully determined with the help of the CZE separations. A pressure-assisted CZE was utilized for the determination or the estimation of the pKa values of such analogues as possessing carboxylic acid moiety

    Mechanistic Insights into Indigo Reduction in Indigo Fermentation : A Voltammetric Study

    Get PDF
    Indigo is one of the oldest natural blue dyes. Microorganisms and their enzymatic activities are deeply involved in the traditional indigo staining procedure. To elucidate the mechanism of the microbial indigo reduction, we directly performed cyclic voltammetry on alkaline fermenting dye suspensions. A pair of characteristic redox peaks of leuco-indigo was observed in a supernatant fluid of the fermenting dye suspension. On the other hand, it was found that the indigo/leuco-indigo redox couple mediated two-way microbially catalyzed oxidation and reduction in a sediment-rich suspension of the fermenting suspension. Acetaldehyde was supposed to be the electron donor and acceptor of the catalytic reactions. In order to verify the bioelectrocatalytic reaction, we isolated indigo-reducing bacterium K2-3′ from the fermenting suspension, and the two-way bioelectrocatalysis was successfully restaged in a model system containing K2-3′ and methyl viologen (as a soluble mediator instead of indigo) as well as acetaldehyde at pH 10

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Effects and Nursing Considerations for Equine-Assisted Activities and Therapies for Children with Autism Spectrum Disorders: A Literature Review

    Get PDF
    This literature review aimed to analyze the effects and nursing challenges associated with equine-assisted activities and therapies (EAATs) for children with autism spectrum disorders (ASD). The study utilized the PubMed, CINAHL, and MEDLINE databases to identify 24 relevant articles. The effective contents were classified into two major categories: effects on interpersonal relationships, and effects attributable to the physical and emotional aspects of the lives of the children. The medical staff involved were mainly occupational therapists, followed by physical therapists and speech-language pathologists. The included studies also mention the involvement of trained equine therapists and volunteers, but not the involvement of nurses. Considering the unique characteristics of EAATs in various settings and the individual needs of the recipients of the therapy, this study highlights the importance of tailoring therapy to individual needs. Nurses should be aware of the potential benefits of EAATs in improving the overall well-being of children with ASD and should consider collaborating with other health care professionals to provide comprehensive care

    Collagen-Derived Dipeptide Pro-Hyp Enhanced ATDC5 Chondrocyte Differentiation under Hypoxic Conditions

    No full text
    Chondrocytes are surrounded by a lower oxygen environment than other well-vascularized tissues with higher oxygenation levels. Prolyl-hydroxyproline (Pro-Hyp), one of the final collagen-derived peptides, has been previously reported to be involved in the early stages of chondrocyte differentiation. However, whether Pro-Hyp can alter chondrocyte differentiation under physiological hypoxic conditions is still unclear. This study aimed to investigate whether Pro-Hyp affects the differentiation of ATDC5 chondrogenic cells under hypoxic conditions. The addition of Pro-Hyp resulted in an approximately 18-fold increase in the glycosaminoglycan staining area compared to the control group under hypoxic conditions. Moreover, Pro-Hyp treatment significantly upregulated the expression of SOX9, Col2a1, Aggrecan, and MMP13 in chondrocytes cultured under hypoxic conditions. These results demonstrate that Pro-Hyp strongly promotes the early differentiation of chondrocytes under physiological hypoxic conditions. Therefore, Pro-Hyp, a bioactive peptide produced during collagen metabolism, may function as a remodeling factor or extracellular matrix remodeling signal that regulates chondrocyte differentiation in hypoxic cartilage

    Determination of <span style="font-variant: small-caps">d</span>- and <span style="font-variant: small-caps">l</span>-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry

    No full text
    Black garlic is currently attracting interest as a health food and constituent of commercial supplements; however, no data regarding the d-amino acids within black garlic have been reported. Therefore, the amino acid compositions of methanol extracts from fresh and black garlic were compared herein. We investigated the contents of the d- and l-forms of amino acids in commercial fresh, black, and freeze-dried garlic foodstuffs by liquid chromatography–tandem mass spectrometry (LC–MS/MS) using a pre-column chiral derivatization reagent, succinimidyl 2-(3-((benzyloxy)carbonyl)-1-methyl-5-oxoimidazolidin-4-yl) acetate. Several d-amino acids, namely, the d-forms of Asn, Ala, Ser, Thr, Glu, Asp, Pro, Arg, Phe, Orn, Lys, and Tyr, were observed in the methanol extract of black garlic, whereas only d-Ala was detected in that of fresh garlic foodstuffs. These data suggest that several d-amino acids can be produced during fermentation for preparing black garlic
    corecore