43 research outputs found
End-to-end complexity for simulating the Schwinger model on quantum computers
The Schwinger model is one of the simplest gauge theories. It is known that a
topological term of the model leads to the infamous sign problem in the
classical Monte Carlo method. In contrast to this, recently, quantum computing
in Hamiltonian formalism has gained attention. In this work, we estimate the
resources needed for quantum computers to compute physical quantities that are
challenging to compute on classical computers. Specifically, we propose an
efficient implementation of block-encoding of the Schwinger model Hamiltonian.
Considering the structure of the Hamiltonian, this block-encoding with a
normalization factor of can be implemented using
T gates. As an end-to-end application,
we compute the vacuum persistence amplitude. As a result, we found that for a
system size and an additive error , with an evolution
time and a lattice spacing a satisfying , the vacuum persistence
amplitude can be calculated using about T gates. Our results provide
insights into predictions about the performance of quantum computers in the
FTQC and early FTQC era, clarifying the challenges in solving meaningful
problems within a realistic timeframe.Comment: 29 pages, 16 figure
Use of anthropometric indicators in screening for undiagnosed vertebral fractures: A cross-sectional analysis of the Fukui Osteoporosis Cohort (FOC) study
<p>Abstract</p> <p>Background</p> <p>Vertebral fractures are the most common type of osteoporotic fracture. Although often asymptomatic, each vertebral fracture increases the risk of additional fractures. Development of a safe and simple screening method is necessary to identify individuals with asymptomatic vertebral fractures.</p> <p>Methods</p> <p>Lateral imaging of the spine by single energy X-ray absorptiometry and vertebral morphometry were conducted in 116 Japanese women (mean age: 69.9 ± 9.3 yr). Vertebral deformities were diagnosed by the McCloskey-Kanis criteria and were used as a proxy for vertebral fractures. We evaluated whether anthropometric parameters including arm span-height difference (AHD), wall-occiput distance (WOD), and rib-pelvis distance (RPD) were related to vertebral deformities. Positive findings were defined for AHD as ≥ 4.0 cm, for WOD as ≥ 5 mm, and for RPD as ≤ two fingerbreadths. Receiver operating characteristics curves analysis was performed, and cut-off values were determined to give maximum difference between sensitivity and false-positive rate. Expected probabilities for vertebral deformities were calculated using logistic regression analysis.</p> <p>Results</p> <p>The mean AHD for those participants with and without vertebral deformities were 7.0 ± 4.1 cm and 4.2 ± 4.2 cm (p < 0.01), respectively. Sensitivity and specificity for use of AHD-positive, WOD-positive and RPD-positive values in predicting vertebral deformities were 0.85 (95% CI: 0.69, 1.01) and 0.52 (95% CI: 0.42, 0.62); 0.70 (95% CI: 0.50, 0.90) and 0.67 (95% CI: 0.57, 0.76); and 0.67 (95% CI: 0.47, 0.87) and 0.59 (95% CI: 0.50, 0.69), respectively. The sensitivity, specificity, and likelihood ratio for a positive result (LR) for use of combined AHD-positive and WOD-positive values were 0.65 (95% CI: 0.44, 0.86), 0.81 (95% CI: 0.73, 0.89), and 3.47 (95% CI: 3.01, 3.99), respectively. The expected probability of vertebral deformities (P) was obtained by the equation; P = 1-(exp [-1.327-0.040 × body weight +1.332 × WOD-positive + 1.623 × AHD-positive])<sup>-1</sup>. The sensitivity, specificity and LR for use of a 0.306 cut-off value for probability of vertebral fractures were 0.65 (95% CI: 0.44, 0.86), 0.87 (95% CI: 0.80, 0.93), and 4.82 (95% CI: 4.00, 5.77), respectively.</p> <p>Conclusion</p> <p>Both WOD and AHD effectively predicted vertebral deformities. This screening method could be used in a strategy to prevent additional vertebral fractures, even when X-ray technology is not available.</p
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Residual Salivary Secretion Ability May Be a Useful Marker for Differential Diagnosis in Autoimmune Diseases
Background. We have elucidated decreased resting salivary flow in approximately 60% of patients with autoimmune diseases not complicated by Sjögren syndrome (SjS). In this study, salivary stimulation tests using capsaicin were performed to examine residual salivary secretion ability in patients with autoimmune diseases. Materials and Methods. Fifty-eight patients were divided into three groups: patients with primary or secondary SjS (SjS group), patients with systemic sclerosis not complicated by SjS (SSc group), and patients with other autoimmune diseases (non-SjS/non-SSc group). Simple filter paper and filter paper containing capsaicin were used to evaluate salivary flow rates. Results. Resting salivary flow rates were significantly lower in the SjS and SSc groups than in the non-SjS/non-SSc group but did not differ significantly between the SjS and SSc groups. Capsaicin-stimulated salivary flow rates were significantly lower in the SjS and SSc groups than in the non-SjS/non-SSc group, but not significantly different between the SjS and SSc groups. In the non-SjS/non-SSc group, salivary flow rates increased after capsaicin stimulation to the threshold level for determination of salivary gland dysfunction, whereas no improvement was observed in the SjS and SSc groups. Conclusion. Residual salivary secretion ability may be a useful marker for differential diagnosis in autoimmune diseases