5,489 research outputs found

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure

    Domain-size control by global feedback in bistable systems

    Full text link
    We study domain structures in bistable systems such as the Ginzburg-Landau equation. The size of domains can be controlled by a global negative feedback. The domain-size control is applied for a localized spiral pattern

    Electromagnetic emission from hot medium measured by the PHENIX experiment at RHIC

    Full text link
    Electromagnetic radiation has been of interest in heavy ion collisions because they shed light on early stages of the collisions where hadronic probes do not provide direct information since hadronization and hadronic interactions occur later. The latest results on photon measurement from the PHENIX experiment at RHIC reflect thermodynamic properties of the matter produced in the heavy ion collisions. An unexpectedly large positive elliptic flow measured for direct photons can not be explained by any of the current models.Comment: Talk contributed to Rutherford Centennial Conference, Aug 8-12, 2011, held in Manchester, U

    Applying Pharmacokinetic and Pharmacodynamic Models in the Operating Room: Validation of Response Surface Models

    Get PDF
    Pharmacokinetics are used to model drug concentrations in the body. These predictions can be combined with pharmacodynamic response surface models that predict the effect of multiple drugs acting on the body. This study combined several pharmacokinetic and pharmacodynamic models to predict “adequate anesthesia.” These predictions were compared to observations in patients. While these specific model combinations are not accurate predictors of anesthesia for the recovery of responsiveness and tracheal intubation, a few combinations are reasonable predictors of the loss of responsiveness and also for the analgesia necessary for the first skin incision. The Schnider propofol model and a fentanyl scaling factor of 1.2 are empirically the most accurate PK models in combination with the pharmacodynamic models used

    Fluctuation Dissipation Relation for a Langevin Model with Multiplicative Noise

    Full text link
    A random multiplicative process with additive noise is described by a Langevin equation. We show that the fluctuation-dissipation relation is satisfied in the Langevin model, if the noise strength is not so strong.Comment: 11 pages, 6 figures, other comment

    Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies

    Full text link
    We generalize the Kuramoto model for coupled phase oscillators by allowing the frequencies to drift in time according to Ornstein-Uhlenbeck dynamics. Such drifting frequencies were recently measured in cellular populations of circadian oscillator and inspired our work. Linear stability analysis of the Fokker-Planck equation for an infinite population is amenable to exact solution and we show that the incoherent state is unstable passed a critical coupling strength K_c(\ga, \sigf), where \ga is the inverse characteristic drifting time and \sigf the asymptotic frequency dispersion. Expectedly KcK_c agrees with the noisy Kuramoto model in the large \ga (Schmolukowski) limit but increases slower as \ga decreases. Asymptotic expansion of the solution for \ga\to 0 shows that the noiseless Kuramoto model with Gaussian frequency distribution is recovered in that limit. Thus varying a single parameter allows to interpolate smoothly between two regimes: one dominated by the frequency dispersion and the other by phase diffusion.Comment: 5 pages, 5 figures, accepted in Phys. Rev.
    corecore