35 research outputs found

    Species-Specific Pathogenicity of Severe Fever with Thrombocytopenia Syndrome Virus Is Determined by Anti-STAT2 Activity of NSs

    Get PDF
    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel emerging virus that has been identified in China, South Korea, and Japan, and it induces thrombocytopenia and leukocytopenia in humans with a high case fatality rate. SFTSV is pathogenic to humans, while immunocompetent adult mice and golden Syrian hamsters infected with SFTSV never show apparent symptoms. However, mice deficient for the gene encoding the α chain of the alpha- and beta-interferon receptor (Ifnar1 -/- mice) and golden Syrian hamsters deficient for the gene encoding signal transducer and activator of transcription 2 (Stat2 -/- hamsters) are highly susceptible to SFTSV infection,with infection resulting in death. The nonstructural protein (NSs) of SFTSV has been reported to inhibit the type I IFN response through sequestration of human STAT proteins.Here, we demonstrated that SFTSV induces lethal acute disease in STAT2-deficient mice but not in STAT1-deficient mice. Furthermore, we discovered that NSs cannot inhibit type I IFN signaling in murine cells due to an inability to bind to murine STAT2. Taken together, our results imply that the dysfunction of NSs in antagonizing murine STAT2 can lead to inefficient replication and the loss of pathogenesis of SFTSV in mice. IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTSV, which has been reported in China,South Korea, and Japan. Here, we revealed that mice lacking STAT2, which is an important factor for antiviral innate immunity, are highly susceptible to SFTSV infection. We also show that SFTSV NSs cannot exert its anti-innate immunity activity in mice due to the inability of the protein to bind to murine STAT2. Our findings suggest that the dysfunction of SFTSV NSs as an IFN antagonist in murine cells confers a loss of pathogenicity of SFTSV in mice

    Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

    Get PDF
    Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals

    No Viral Evolution in the Lymph Nodes of Simian Immunodeficiency Virus-Infected Rhesus Macaques during Combined Antiretroviral Therapy.

    Get PDF
    To elucidate the mode of viral persistence in primate lentivirus-infected individuals during combination antiretroviral therapy (cART), four simian immunodeficiency virus 239-infected monkeys were treated with cART for 1 year. The viral env genes prepared from total RNA extracted from the mesenteric lymph nodes collected at the completion of therapy were assessed by single genome amplification. Analyses of nucleotide substitutions and phylogeny revealed no viral evolution during cART

    Development of an Immunochromatographic Kit for Rapid Diagnosis of H5 Avian Influenza Virus Infection

    Get PDF
    Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti-H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI

    Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea.

    No full text
    Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure
    corecore