11 research outputs found

    Impact of Genomics on Chickpea Breeding

    No full text
    Chickpea is an economical source of vegetable protein for the poor living in the semi-arid regions globally. As a consequence of climate change and increasing climate variability, the incidences of drought and heat stresses and severity of some diseases, such as dry root rot and collar rot, have increased in chickpea crop, resulting in poor and unstable yields. By improoving the efficiency of crop breeding programs, climate resilient varieties with traits desired by the farmers, industries and consumers can be developed more rapidly. Excellent progress has been made in the development of genomic resources for chickpea in the recent past. Several national and international chickpea breeding programs have started utilizing these genomic resources and tools for genetic improvement of complex traits. One of such examples includes the introgression of “QTL-hotspot” containing quantitative trait loci (QTLs) for several drought tolerance-related traits, including root traits, through marker-assisted backcrossing (MABC) for enhancing drought tolerance in popular cultivars. Several drought-tolerant introgression lines with higher yield as compared to the popular cultivars have been identified. Multi-parent advanced generation intercross (MAGIC) populations developed from using 8 parents created large genetic diversity consequently several promising lines. Marker-assisted recurrent selection (MARS) has also been explored for yield improvement in chickpea. Development of diagnostic markers or the identification of candidate genes for several traits is essential for greater use of genomic resources in chickpea improvement

    Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.)

    Get PDF
    Flowering time is an important trait for adaptation and productivity of chickpea in the arid and the semi-arid environments. This study was conducted for molecular mapping of genes/quantitative trait loci (QTLs) controlling flowering time in chickpea using F2 populations derived from four crosses (ICCV 96029 × CDC Frontier, ICC 5810 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier). Genetic studies revealed monogenic control of flowering time in the crosses ICCV 96029 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier, while digenic control with complementary gene action in ICC 5810 × CDC Frontier. The intraspecific genetic maps developed from these crosses consisted 75, 75, 68 and 67 markers spanning 248.8 cM, 331.4 cM, 311.1 cM and 385.1 cM, respectively. A consensus map spanning 363.8 cM with 109 loci was constructed by integrating four genetic maps. Major QTLs corresponding to flowering time genes efl-1 from ICCV 96029, efl-3 from BGD 132 and efl-4 from ICC 16641 were mapped on CaLG04, CaLG08 and CaLG06, respectively. The QTLs and linked markers identified in this study can be used in marker-assisted breeding for developing early maturing chickpea

    High yielding and drought tolerant genotypes developed through marker-assisted back crossing (MBAC) in chickpea

    No full text
    Chickpea (Cicer arietinum L.) is the second largest grown food legume crop in the world after common bean. This crop is largely grown under rainfed conditions in Asia and sub-Saharan Africa where terminal drought is the major production constraint. Generation of large scale genomic resources in chickpea during the recent years has made it possible to improve the complex traits like drought tolerance. A “QTL-hotspot” harbouring QTLs for several root and drought tolerance traits was transferred from the drought tolerant line ICC 4958 to a leading chickpea cultivar JG 11 (ICCV 93954), and a widely adapted cultivar Bharati (ICCV 10) in India. A set of 20 BC3F4/ BC3F5 introgression lines (ILs) of JG 11 and 22 of Bharati were evaluated at three to four locations (Patancheru, Nandyal, Gulbarga and Dharwad) in Southern India over two years during 2011-12 to 2014-15. Many lines giving at least 10% higher yield than the recurrent parents JG 11 and Bharati were identified at each location and in each growing condition (rainfed/irrigated). As the introgressed genomic region also influences seed size, most ILs had bigger seed than the recurrent parents. These results are very encouraging and demonstrate the effectiveness of marker-assisted breeding in improving terminal drought stress tolerance in chickpea

    Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions

    No full text
    Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea

    Chickpea breeding for water-limited environments

    Get PDF
    Chickpea (Cicer arietinum L.) is a dry season food legume and is largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards the end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage, if sowing is delayed. The increasing climate variability, reflected in wide fluctuations in temperatures and rainfall, is further aggravating risks of terminal drought and heat stresses to chickpea crop, particularly in the semi-arid tropics (SAT). The genetic approaches being used for managing terminal drought and heat stresses include development of varieties with early maturity and enhanced tolerance to these stresses. Excellent progress has been made in the development of early maturing varieties with high yield potential, which helped in bringing additional area under cultivation and enhancing productivity of chickpea in short-season SAT environments. Several varieties with improved drought tolerance have been developed by the classical approach of selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop, subjected to reproductive stage heat stress by delayed planting, has helped in development of heat-tolerant varieties. A genomic region called “QTL-hot spot”, which controls a number of drought tolerance traits including root traits, has been introgressed into several popular cultivars using marker-assisted backcrossing (MABC); and introgression lines giving significantly higher yield than the popular cultivars under moisture stress conditions have been identified. Multi-parent advanced generation inter-cross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses. Integrated breeding approaches involving, particularly, genomic tools, precision phenotyping, and rapid generation turnover techniques, have improved efficiency of chickpea breeding programs in developing varieties better adapted to water limited environments

    Pigeonpea improvement: An amalgam of breeding and genomic research

    Get PDF
    In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research

    Integrated breeding approaches for improving drought and heat adaptation in chickpea ( Cicer arietinum L.)

    No full text
    Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses

    Hippocampal-Dependent Inhibitory Learning and Memory Processes in the Control of Eating and Drug Taking

    No full text
    corecore