3 research outputs found

    Evaluating PCR-Based Detection of Salmonella Typhi and Paratyphi A in the Environment as an Enteric Fever Surveillance Tool.

    Get PDF
    With prequalification of a typhoid conjugate vaccine by the World Health Organization, countries are deciding whether and at what geographic scale to provide the vaccine. Optimal local data to clarify typhoid risk are expensive and often unavailable. To determine whether quantitative polymerase chain reaction (qPCR) can be used as a tool to detect typhoidal Salmonella DNA in the environment and approximate the burden of enteric fever, we tested water samples from urban Dhaka, where enteric fever burden is high, and rural Mirzapur, where enteric fever burden is low and sporadic. Sixty-six percent (38/59) of the water sources of Dhaka were contaminated with typhoidal Salmonella DNA, in contrast to none of 33 samples of Mirzapur. If these results can be replicated in larger scale in Bangladesh and other enteric fever endemic areas, drinking water testing could become a low-cost approach to determine the presence of typhoidal Salmonella in the environment that can, in turn, guide informed-design of blood culture-based surveillance and thus assist policy decisions on investing to control typhoid

    Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity.

    Get PDF
    Salmonella Paratyphi A, the primary etiology of paratyphoid, is estimated to cause 3.4 million infections annually, worldwide. With rising antimicrobial resistance and no licensed vaccines, genomic surveillance is key to track and monitor transmission, but there is currently no reliable genotyping framework for this pathogen. Here, we sequence 817 isolates from South Asia and add 562 publicly available genomes to build a global database representing 37 countries, covering 1917-2019. We develop a single nucleotide polymorphism-based genotyping scheme, Paratype, that segregates Salmonella Paratyphi A population into three primary and nine secondary clades, and 18 genotypes. Each genotype is assigned a unique allele definition located on an essential gene. Using Paratype, we identify spatiotemporal genomic variation and antimicrobial resistance markers. We release Paratype as an open-access tool that can use raw read files from both Illumina and Nanopore platforms, and thus can assist surveillance studies tracking Salmonella Paratyphi A across the globe

    Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity.

    Get PDF
    Salmonella Paratyphi A, the primary etiology of paratyphoid, is estimated to cause 3.4 million infections annually, worldwide. With rising antimicrobial resistance and no licensed vaccines, genomic surveillance is key to track and monitor transmission, but there is currently no reliable genotyping framework for this pathogen. Here, we sequence 817 isolates from South Asia and add 562 publicly available genomes to build a global database representing 37 countries, covering 1917-2019. We develop a single nucleotide polymorphism-based genotyping scheme, Paratype, that segregates Salmonella Paratyphi A population into three primary and nine secondary clades, and 18 genotypes. Each genotype is assigned a unique allele definition located on an essential gene. Using Paratype, we identify spatiotemporal genomic variation and antimicrobial resistance markers. We release Paratype as an open-access tool that can use raw read files from both Illumina and Nanopore platforms, and thus can assist surveillance studies tracking Salmonella Paratyphi A across the globe
    corecore