13 research outputs found

    Genome sequence of a dengue virus serotype 2 strain identified during the 2019 outbreak in Bangladesh

    Get PDF
    A nearly complete genome sequence of a dengue virus serotype 2 strain detected in the serum of a patient in 2019 during the largest outbreak of dengue fever in Bangladesh is reported

    Evaluating PCR-based detection of Salmonella Typhi and Paratyphi A in the environment as an enteric fever surveillance tool

    Get PDF
    With prequalification of a typhoid conjugate vaccine by the World Health Organization, countries are deciding whether and at what geographic scale to provide the vaccine. Optimal local data to clarify typhoid risk are expensive and often unavailable. To determine whether quantitative polymerase chain reaction (qPCR) can be used as a tool to detect typhoidal Salmonella DNA in the environment and approximate the burden of enteric fever, we tested water samples from urban Dhaka, where enteric fever burden is high, and rural Mirzapur, where enteric fever burden is low and sporadic. Sixty-six percent (38/59) of the water sources of Dhaka were contaminated with typhoidal Salmonella DNA, in contrast to none of 33 samples of Mirzapur. If these results can be replicated in larger scale in Bangladesh and other enteric fever endemic areas, drinking water testing could become a low-cost approach to determine the presence of typhoidal Salmonella in the environment that can, in turn, guide informed-design of blood culture-based surveillance and thus assist policy decisions on investing to control typhoid

    Tracking the emergence of azithromycin resistance in multiple genotypes of typhoidal salmonella

    Get PDF
    The rising prevalence of antimicrobial resistance in Salmonella enterica serovars Typhi and Paratyphi A, causative agents of typhoid and paratyphoid, have led to fears of untreatable infections. Of specific concern is the emerging resistance against azithromycin, the only remaining oral drug to treat extensively drug resistant (XDR) typhoid. Since the first report of azithromycin resistance from Bangladesh in 2019, cases have been reported from Nepal, India, and Pakistan. The genetic basis of this resistance is a single point mutation in the efflux pump AcrB (R717Q/L). Here, we report 38 additional cases of azithromycin-resistant (AzmR) Salmonella Typhi and Paratyphi A isolated in Bangladesh between 2016 and 2018. Using genomic analysis of 56 AzmR isolates from South Asia with AcrB-R717Q/L, we confirm that this mutation has spontaneously emerged in different Salmonella Typhi and Paratyphi A geno-types. The largest cluster of AzmR Typhi belonged to genotype 4.3.1.1; Bayesian analysis predicts the mutation to have emerged sometime in 2010. A travel-related Typhi isolate with AcrB-R717Q belonging to 4.3.1.1 was isolated in the United Kingdom, increasing fears of global spread. For real-time detection of AcrB-R717Q/L, we developed an extraction-free, rapid, and low-cost mismatch amplification mutation assay (MAMA). Validation of MAMA using 113 AzmR and non-AzmR isolates yielded >98% specificity and sensitivity versus phenotypic and whole-genome sequencing assays currently used for azithromycin resistance detection

    Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global public health concern due to increasing antimicrobial resistance (AMR). Characterization of S Typhi genomes for AMR and the evolution of different lineages, especially in countries where typhoid fever is endemic such as Bangladesh, will help public health professionals to better design and implement appropriate preventive measures. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh during 1999 to 2013 and compared those sequences with data from a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J. Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A. Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018, https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR phenotypes but needs further impr

    Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance

    Get PDF
    BACKGROUND: With the rise in fluoroquinolone-resistant Salmonella Typhi and the recent emergence of ceftriaxone resistance, azithromycin is one of the last oral drugs available against typhoid for which resistance is uncommon. Its increasing use, specifically in light of the ongoing outbreak of extensively drug-resistant (XDR) Salmonella Typhi (resistant to chloramphenicol, ampicillin, cotrimoxazole, streptomycin, fluoroquinolones and third-generation cephalosporins) in Pakistan, places selective pressure for the emergence and spread of azithromycin-resistant isolates. However, little is known about azithromycin resistance in Salmonella, and no molecular data are available on its mechanism. METHODS AND FINDINGS: We conducted typhoid surveillance in the two largest pediatric hospitals of Bangladesh from 2009-2016. All typhoidal Salmonella strains were screened for azithromycin resistance using disc diffusion and resistance was confirmed using E-tests. In total, we identified 1,082 Salmonella Typhi and Paratyphi A strains; among these, 13 strains (12 Typhi, 1 Paratyphi A) were azithromycin-resistant (MIC range: 32-64 μg/ml) with the first case observed in 2013. We sequenced the resistant strains, but no molecular basis of macrolide resistance was identified by the currently available antimicrobial resistance prediction tools. A whole genome SNP tree, made using RAxML, showed that the 12 Typhi resistant strains clustered together within the 4.3.1.1 sub-clade (H58 lineage 1). We found a non-synonymous single-point mutation exclusively in these 12 strains in the gene encoding AcrB, an efflux pump that removes small molecules from bacterial cells. The mutation changed the conserved amino acid arginine (R) at position 717 to a glutamine (Q). To test the role of R717Q present in azithromycin-resistant strains, we cloned acrB from azithromycin-resistant and sensitive strains, expressed them in E. coli, Typhi and Paratyphi A strains and tested their azithromycin susceptibility. Expression of AcrB-R717Q in E. coli and Typhi strains increased the minimum inhibitory concentration (MIC) for azithromycin by 11- and 3-fold respectively. The azithromycin-resistant Paratyphi A strain also contained a mutation at R717 (R717L), whose introduction in E. coli and Paratyphi A strains increased MIC by 7- and 3-fold respectively, confirming the role of R717 mutations in conferring azithromycin resistance. CONCLUSIONS: This report confirms 12 azithromycin-resistant Salmonella Typhi strains and one Paratyphi A strain. The molecular basis of this resistance is one mutation in the AcrB protein at position 717. This is the first report demonstrating the impact of this non-synonymous mutation in conferring macrolide resistance in a clinical setting. With increasing azithromycin use, strains with R717 mutations may spread and be acquired by XDR strains. An azithromycin-resistant XDR strain would shift enteric fever treatment from outpatient departments, where patients are currently treated with oral azithromycin, to inpatient departments to be treated with injectable antibiotics like carbapenems, thereby further burdening already struggling health systems in endemic regions. Moreover, with the dearth of novel antimicrobials in the horizon, we risk losing our primary defense against widespread mortality from typhoid. In addition to rolling out the WHO prequalified typhoid conjugate vaccine in endemic areas to decrease the risk of pan-resistant Salmonella Typhi strains, it is also imperative to implement antimicrobial stewardship and water sanitation and hygiene intervention to decrease the overall burden of enteric fever

    Trends in antimicrobial resistance amongst Salmonella Paratyphi A isolates in Bangladesh: 1999-2021.

    No full text
    BackgroundTyphoid and paratyphoid remain common bloodstream infections in areas with suboptimal water and sanitation infrastructure. Paratyphoid, caused by Salmonella Paratyphi A, is less prevalent than typhoid and its antimicrobial resistance (AMR) trends are less documented. Empirical treatment for paratyphoid is commonly based on the knowledge of susceptibility of Salmonella Typhi, which causes typhoid. Hence, with rising drug resistance in Salmonella Typhi, last-line antibiotics like ceftriaxone and azithromycin are prescribed for both typhoid and paratyphoid. However, unlike for typhoid, there is no vaccine to prevent paratyphoid. Here, we report 23-year AMR trends of Salmonella Paratyphi A in Bangladesh.MethodsFrom 1999 to 2021, we conducted enteric fever surveillance in two major pediatric hospitals and three clinics in Dhaka, Bangladesh. Blood cultures were performed at the discretion of the treating physicians; cases were confirmed by culture, serological and biochemical tests. Antimicrobial susceptibility was determined following CLSI guidelines.ResultsOver 23 years, we identified 2,725 blood culture-confirmed paratyphoid cases. Over 97% of the isolates were susceptible to ampicillin, chloramphenicol, and cotrimoxazole, and no isolate was resistant to all three. No resistance to ceftriaxone was recorded, and >99% of the isolates were sensitive to azithromycin. A slight increase in minimum inhibitory concentration (MIC) is noticed for ceftriaxone but the current average MIC is 32-fold lower than the resistance cut-off. Over 99% of the isolates exhibited decreased susceptibility to ciprofloxacin.ConclusionsSalmonella Paratyphi A has remained susceptible to most antibiotics, unlike Salmonella Typhi, despite widespread usage of many antibiotics in Bangladesh. The data can guide evidence-based policy decisions for empirical treatment of paratyphoid fever, especially in the post typhoid vaccine era, and with the availability of new paratyphoid diagnostics
    corecore