85 research outputs found

    Case Studies on Long-term Settlement of Soft Clay Ground

    Get PDF
    Two case histories on long-term settlements of Ariake clay which is counted as one of the soft clays in Japan are described. The one of them is to report the settlement which have been observed over 25 years since construction of embankment for breakwater on the coastal Ariake deposit. The another case history is concerned with the settlement of low embankment highway on Ariake clay whose shallow surface was improved by quickline-clay mixture as a countermeasure for the settlement. The current paper is featured by the fact that the predominant secondary settlement is common with two case histories. The finite element method using an elasto-plastic mo1el was adopted to analyze the settlement of the Ariake clay observed in the above-mentioned two case histories under sustained and transient loading, respectively. It is concluded from comparison of analytical results with observed settlement that the proposed model with consideration of secondary compression is advantageous for long-term settlement prediction of soft clay

    A novel type of binding specificity to phospholipids for rat mannose-binding proteins isolated from serum and liver

    Get PDF
    AbstractMannose-binding protein (MBP) belongs to the collectin subgroup of C-type lectins with specificity for mannose and N-acetylglucosamine sugars. We investigated whether rat MBPs isolated from serum (S-MBP) and liver (L-MBP) interact with phospholipids using antibody against each MBP. Both S- and L-MBPs bound to phosphatidylinositol coated onto microtiter wells in a concentration- and a Ca2+-dependent manner. L-MBP also bound to phosphatidylglycerol and weakly to phosphatidylserine. MBPs interacted with liposomes composed of these lipids. S- and L-MBPs bound to phosphatidylinositol 4-monophosphate. L-MBP also bound to cardiolipin. These results provide evidence for a novel type of ligand binding specificity for MBPs, and raise the possibility that phospholipids are ligands for collectins

    Itinerant U 5f band states in the layered compound UFeGa5 observed by soft X-ray angle-resolved photoemission spectroscopy

    Full text link
    We have performed angle-resolved photoemission spectroscopy (ARPES) experiments on paramagnetic UFeGa5 using soft X-ray synchrotron radiation (hn=500eV) and derived the bulk- and U 5f-sensitive electronic structure of UFeGa5. Although the agreement between the experimental band structure and the LDA calculation treating U 5f electrons as being itinerant is qualitative, the morphology of the Fermi surface is well explained by the calculation, suggesting that the U 5f states can be essentially understood within the itinerant-electron model.Comment: 13 pages, 4 figur

    Lipopolysaccharide Interaction with Cell Surface Toll-like Receptor 4-MD-2: Higher Affinity than That with MD-2 or CD14

    Get PDF
    Toll-like receptors (TLRs) are innate recognition molecules for microbial products, but their direct interactions with corresponding ligands remain unclarified. LPS, a membrane constituent of gram-negative bacteria, is the best-studied TLR ligand and is recognized by TLR4 and MD-2, a molecule associated with the extracellular domain of TLR4. Although TLR4-MD-2 recognizes LPS, little is known about the physical interaction between LPS and TLR4-MD-2. Here, we demonstrate cell surface LPS–TLR4-MD-2 complexes. CD14 greatly enhances the formation of LPS–TLR4-MD-2 complexes, but is not coprecipitated with LPS–TLR4-MD-2 complexes, suggesting a role for CD14 in LPS loading onto TLR4-MD-2 but not in the interaction itself between LPS and TLR4-MD-2. A tentative dissociation constant (Kd) for LPS–TLR4-MD-2 complexes was ∼3 nM, which is ∼10–20 times lower than the reported Kd for LPS–MD-2 or LPS–CD14. The presence of detergent disrupts LPS interaction with CD14 but not with TLR4-MD-2. E5531, a lipid A antagonist developed for therapeutic intervention of endotoxin shock, blocks LPS interaction with TLR4-MD-2 at a concentration 100 times lower than that required for blocking LPS interaction with CD14. These results reveal direct LPS interaction with cell surface TLR4-MD-2 that is distinct from that with MD-2 or CD14
    • …
    corecore