900 research outputs found

    Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

    Full text link
    In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at \url{https://github.com/mil-tokyo/MCD_DA}Comment: Accepted to CVPR2018 Oral, Code is available at https://github.com/mil-tokyo/MCD_D

    Symmetry Breaking in Bose-Einstein Condensates

    Full text link
    A gaseous Bose-Einstein condensate (BEC) offers an ideal testing ground for studying symmetry breaking, because a trapped BEC system is in a mesoscopic regime, and situations exist under which symmetry breaking may or may not occur. Investigating this problem can explain why mean-field theories have been so successful in elucidating gaseous BEC systems and when many-body effects play a significant role. We substantiate these ideas in four distinct situations: namely, soliton formation in attractive BECs, vortex nucleation in rotating BECs, spontaneous magnetization in spinor BECs, and spin texture formation in dipolar BECs.Comment: Submitted to the proceedings of International Conference on Atomic Physics 200
    • …
    corecore