496 research outputs found

    Management of deep neck infection by a transnasal approach: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Deep neck infection is a life-threatening condition, and intravenous antibiotic therapy is preferable in the early stages of the disease. However, in the advanced stages, surgical drainage should be performed. Although several surgical treatment strategies are available, it is necessary to standardize treatment according to the patient's general condition and history.</p> <p>Case presentation</p> <p>We report the case of a 68-year-old man with a deep neck abscess and with severe diabetes mellitus and inflammation. Computed tomography identified a deep neck infection extending from the level of the epipharynx to that of the hyoid bone. We performed surgical drainage by transnasal endoscopy. The patient exhibited no evidence of either recurrent disease or post-surgical complications within 30 months of follow-up.</p> <p>Conclusions</p> <p>This case report provides evidence that transnasal endoscopic drainage should be recommended as a standard approach in patients with a deep neck abscess and with a severe general condition, diabetes mellitus, and inflammation.</p

    The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration

    Get PDF
    There has been an increasing amount of research on regenerative medicine for the treatment of bone defects. Scaffolds are needed for the formation of new bone, and various scaffolding materials have been evaluated for bone regeneration. Materials with pores that allow cells to differentiate into osteocytes are preferred in scaffolds for bone regeneration, and porous materials and fibers are well suited for this application. Electrospinning is an effective method for producing a nanosized fiber by applying a high voltage to the needle tip containing a polymer solution. The use of electrospun nanofibers is being studied in the medical field, and its use as a scaffold for bone regeneration therapy has become a topic of growing interest. In this review, we will introduce the potential use of electrospun nanofiber as a scaffold for bone regenerative medicine with a focus on carbon nanofibers produced by the electrospinning method.ArticleNANOMATERIALS. 10(3):562 (2020)journal articl

    RNA structure-wide discovery of functional interactions with multiplexed RNA motif library

    Get PDF
    RNA構造のライブラリ化を通じてRNA 構造ごとにおけるRNA-タンパク質相互作用を大規模に解析するシステム「FOREST」の開発 --RNAを標的とする創薬に道--. 京都大学プレスリリース. 2020-12-09.Biochemical assays and computational analyses have discovered RNA structures throughout various transcripts. However, the roles of these structures are mostly unknown. Here we develop folded RNA element profiling with structure library (FOREST), a multiplexed affinity assay system to identify functional interactions from transcriptome-wide RNA structure datasets. We generate an RNA structure library by extracting validated or predicted RNA motifs from gene-annotated RNA regions. The RNA structure library with an affinity enrichment assay allows for the comprehensive identification of target-binding RNA sequences and structures in a high-throughput manner. As a proof-of-concept, FOREST discovers multiple RNA-protein interaction networks with quantitative scores, including translational regulatory elements that function in living cells. Moreover, FOREST reveals different binding landscapes of RNA G-quadruplex (rG4) structures-binding proteins and discovers rG4 structures in the terminal loops of precursor microRNAs. Overall, FOREST serves as a versatile platform to investigate RNA structure-function relationships on a large scale

    Current status and future plan of the Program of the Antarctic Syowa MST/IS radar (PANSY)

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / 2F Auditorium, National Institute of Polar Researc

    A49T, V89L and TA repeat polymorphisms of steroid 5α-reductase type II and breast cancer risk in Japanese women

    Get PDF
    BACKGROUND: Breast cancer is hormone related, as are cancers of the endometrium, ovary, and prostate. Several studies have suggested that higher extracellular levels of androgens are associated with breast cancer risk, while biological evidence indicates that androgens are protective. The codon 49 alanine to threonine substitution (A49T), codon 89 valine to leucine substitution (V89L) and TA repeat polymorphisms of the steroid 5α-reductase type II (SRD5A2) gene are considered functional with respect to enzyme activity converting testosterone into dihydrotestosterone. To test the hypothesis that these three polymorphisms are associated with risk of breast cancer, a case–control study was conducted with patients of Aichi Cancer Center Hospital. METHODS: The cases were 237 patients histologically diagnosed with breast cancer, and the controls were 185 noncancer outpatients. DNA from peripheral blood was genotyped by PCR methods. RESULTS: The threonine allele of A49T was not found in our subjects. Compared with the V/V genotype of V89L, the L/L genotype was associated with a decreased risk (crude odds ratio [OR] = 0.61, 95% confidence interval [CI] = 0.36–1.05). This was also the case for the TA(9/9) genotype, with an OR of 0.58 (95% CI = 0.13–2.63) relative to TA(0/0). Among women with the TA(0/0) genotype, however, the OR for the L/L genotype was 0.46 (95% CI = 0.24–0.88) compared with the V/V genotype, and those with the V/V and TA(0/0) genotypes had the highest risk. The haplotype with the L and TA(9) repeat alleles was not found. CONCLUSION: This study is the first to our knowledge focusing on Japanese women, suggesting that SRD5A2 polymorphisms might have an association with breast cancer risk. Further large-sample studies will be required to confirm the association and to assess any interactions with environmental factors

    Applications of Carbon Nanotubes in Bone Regenerative Medicine

    Get PDF
    Scaffolds are essential for bone regeneration due to their ability to maintain a sustained release of growth factors and to provide a place where cells that form new bone can enter and proliferate. In recent years, scaffolds made of various materials have been developed and evaluated. Functionally effective scaffolds require excellent cell affinity, chemical properties, mechanical properties, and safety. Carbon nanotubes (CNTs) are fibrous nanoparticles with a nano-size diameter and have excellent strength and chemical stability. In the industrial field, they are used as fillers to improve the performance of materials. Because of their excellent physicochemical properties, CNTs are studied for their promising clinical applications as biomaterials. In this review article, we focused on the results of our research on CNT scaffolds for bone regeneration, introduced the promising properties of scaffolds for bone regeneration, and described the potential of CNT scaffolds.ArticleNANOMATERIALS. 10(4):659 (2020)journal articl

    Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration

    Get PDF
    The unidirectional porous hydroxyapatite HAp (UDPHAp) is a scaffold with continuous communicated pore structure in the axial direction. We evaluated and compared the ability of the UDPHAp as a three-dimensional (3D) bone tissue engineering scaffold to the interconnected calcium porous HAp ceramic (IP-CHA). To achieve this, we evaluated in vitro the compressive strength, controlled rhBMP-2 release behavior, adherent cell morphology, cell adhesion manner, and cell attachment of UDPHAp. As a further in vivo experiment, UDPHAp and IP-CHA with rhBMP-2 were transplanted into mouse calvarial defects to evaluate their bone-forming ability. The Results demonstrated that the maximum compressive strengths of the UDPHAp was 7.89 +/- 1.23 MPa and higher than that of IP-CHA (1.92 +/- 0.53 MPa) (p = 0.0039). However, the breaking energies were similar (8.99 +/- 2.72 vs. 13.95 +/- 5.69 mJ, p = 0.055). The UDPHAp released rhBMP-2 more gradually in vivo. Cells on the UDPHAp adhered tightly to the surface, which had grown deeply into the scaffolds. A significant increase in cell number on the UDPHAp was observed compared to the IP-CHA on day 8 (102,479 +/- 34,391 vs. 32,372 +/- 29,061 estimated cells per scaffold, p = 0.0495). In a mouse calvarial defect model, the percentages of new bone area (mature bone + trabecular bone) in the 2x field were 2.514% +/- 1.224% for the IP-CHA group and 7.045% +/- 2.055% for the UDPHAp group, and the percentage was significantly higher in the UDPHAp group (p = 0.0209). While maintaining the same strength as the IP-CHA, the UDPHAp with 84% porosity showed a high cell number, high cell invasiveness, and excellent bone formation. We believe the UDPHAp is an excellent material that can be applied to bone regenerative medicine.ArticleMATERIALS. 10(1):33 (2017)journal articl

    Cellular Responses of Human Lymphatic Endothelial Cells to Carbon Nanomaterials

    Get PDF
    One of the greatest challenges to overcome in the pursuit of the medical application of carbon nanomaterials (CNMs) is safety. Particularly, when considering the use of CNMs in drug delivery systems (DDSs), evaluation of safety at the accumulation site is an essential step. In this study, we evaluated the toxicity of carbon nanohorns (CNHs), which are potential DDSs, using human lymph node endothelial cells that have been reported to accumulate CNMs, as a comparison to fibrous, multi-walled carbon nanotubes (MWCNTs) and particulate carbon black (CB). The effect of different surface characteristics was also evaluated using two types of CNHs (untreated and oxidized). In the fibrous MWCNT, cell growth suppression, as well as expression of inflammatory cytokine genes was observed, as in previous reports. In contrast, no significant toxicity was observed for particulate CB and CNHs, which was different from the report of CB cytotoxicity in vascular endothelial cells. These results show that (1) lymph endothelial cells need to be tested separately from other endothelial cells for safety evaluation of nanomaterials, and (2) the potential of CNHs as DDSs.ArticleNANOMATERIALS. 10(7):1374 (2020)journal articl

    Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Get PDF
    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs - VGCF (R)-X, VGCF (R)-S, and VGCF (R) (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) - and three CSCNTs of different lengths (CS-L, 20-80 mu m; CS-S, 0.5-20 mu m; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1-50 mu g/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 mu g/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.ArticleINTERNATIONAL JOURNAL OF NANOMEDICINE. 9:1979-1990 (2014)journal articl
    corecore