385 research outputs found

    Effect of chemical admixture on property of fresh mortar using sludge water

    Get PDF
    Addition of sludge water as a part of mixing water had little influence on strength and durability of hardened concrete, but caused a slump decrease of fresh concrete. The decrease of slump was improved by addition of a certain set retarder such as gluconate into sludge water due to control of cement hydration. Some of polymers were also effective in improvement of slump. However hydration of cement was observed in those cases of polymers. Therefore it is presumed such the polymers improve slump not by hydration control effect but by another one

    Stored in the archives: Uncovering the CN/CO intensity ratio with ALMA in nearby U/LIRGs

    Full text link
    We present an archival Atacama Large Millimeter/submillimeter Array (ALMA) study of the CN N = 1 - 0 / CO J = 1 - 0 intensity ratio in nearby (z < 0.05) Ultra Luminous and Luminous Infrared Galaxies (U/LIRGs). We identify sixteen U/LIRGs that have been observed in both CN and CO lines at \sim 500 pc resolution based on sixteen different ALMA projects. We measure the (CN bright)/CO and (CN bright)/(CN faint) intensity ratios at an ensemble of molecular clouds scales (CN bright = CN N = 1 - 0, J = 3/2 - 1/2; CN faint = CN N = 1 - 0, J = 1/2 - 1/2 hyperfine groupings). Our global measured (CN bright)/CO ratios range from 0.02-0.15 in LIRGs and 0.08-0.17 in ULIRGs. We attribute the larger spread in LIRGs to the variety of galaxy environments included in our sample. Overall, we find that the (CN bright)/CO ratio is higher in nuclear regions, where the physical and excitation conditions favour increased CN emission relative to the disk regions. 10 out of 11 galaxies which contain well-documented active galactic nuclei show higher ratios in the nucleus compared to the disk. Finally, we measure the median resolved (CN bright)/(CN faint) ratio and use it to estimate the total integrated CN line optical depth in ULIRGs (τ\tau \sim 0.96) and LIRGs (τ\tau \sim 0.23). The optical depth difference is likely due to the higher molecular gas surface densities found in the more compact ULIRG systems.Comment: Accepted to MNRAS; 18 pages, 9 figure

    Detection of extended millimeter emission in the host galaxy of 3C273 and its implications for QSO feedback via high dynamic range ALMA imaging

    Full text link
    We estimate the amount of negative feedback energy injected into the ISM of the host galaxy of 3C273, a prototypical radio loud quasar. We obtained 93, 233 and 343 GHz continuum images with the Atacama Large Millimeter/Sub-millimeter Array (ALMA). After self calibration and point source subtraction, we reach an image dynamic range of 85000\sim 85000 at 93\ GHz, 39000\sim 39000 at 233\ GHz and 2500\sim 2500 at 343\ GHz. These are currently the highest image dynamic range obtained using ALMA. We detect spatially extended millimeter emission associated with the host galaxy, cospatial with the Extended Emission Line Region (EELR) observed in the optical. The millimeter spectral energy distribution and comparison with centimeter data show that the extended emission cannot be explained by dust thermal emission, synchrotron or thermal bremsstrahlung arising from massive star formation. We interpret the extended millimeter emission as thermal bremsstrahlung from gas directly ionized by the central source. The extended flux indicates that at least 7%\sim 7\% of the bolometric flux of the nuclear source was used to ionize atomic hydrogen in the host galaxy. The ionized gas is estimated to be as massive as 101010^{10} to 1011 M10^{11}\ \mathrm{M_\odot}, but the molecular gas fraction with respect to the stellar mass is consistent with other ellipticals, suggesting that direct ionization ISM by the QSO may not be sufficient to suppress star formation, or we are witnessing a short timescale before negative feedback becomes observable. The discovery of a radio counterpart to EELRs provides a new pathway to studying the QSO-host ISM interaction
    corecore