425 research outputs found

    Essential updates 2020/2021 : Current topics of simulation and navigation in hepatectomy

    Get PDF
    With the development of three-dimensional (3D) simulation software, preoperative simulation technology is almost completely established. The remaining issue is how to recognize anatomy three-dimensionally. Extended reality is a newly developed technology with several merits for surgical application: no requirement for a sterilized display monitor, better spatial awareness, and the ability to share 3D images among all surgeons. Various technology or devices for intraoperative navigation have also been developed to support the safety and certainty of liver surgery. Consensus recommendations regarding indocyanine green fluorescence were determined in 2021. Extended reality has also been applied to intraoperative navigation, and artificial intelligence (AI) is one of the topics of real-time navigation. AI might overcome the problem of liver deformity with automatic registration. Including the issues described above, this article focuses on recent advances in simulation and navigation in liver surgery from 2020 to 2021

    Regeneration of caudate lobe in left lobe graft

    Get PDF
    Background : The aim of this study is to clarify the regeneration of the CL (caudate lobe) without any reconstructions of short hepatic veins (SHVr) after LDLT (living donor liver transplantation) and compare the regeneration of the CL after right hepatectomy (Rt. Hx), as the surrogate model of extended left lobe graft (Ex LLG) with complete SHVr. Methods : Eleven Ex LLGs with CL were included in this study. SHVr was not performed in all cases. The volumetry was performed before, one month and six months after LDLT. Seven patients who underwent Rt. Hx were also included in this study as the surrogate model. Results : In Ex LLGs with CL, the regeneration rate of the large CL (> 30 ml) was worse than that of small CL (< 30 ml). In the surrogate model, the regeneration rate of the CL was not worse than other segments. However, the regeneration rate of the large CL was also worse than that of small CL even in the presence of complete SHVr. Conclusions : The regeneration of the large CL was worse than that of the small CL regardless of the presence or absence of SHVr, indicating that SHVr in Ex LLG with CL might not be necessary

    Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5′ cap-modified mRNAs

    Get PDF
    様々な5'キャップ構造をもつ機能的なmRNAの汎用的な合成方法 酵素を用いて簡便かつ効率的に. 京都大学プレスリリース. 2023-02-03.Development of a versatile method to synthesize functional mRNAs with diverse 5' cap structures. 京都大学プレスリリース. 2023-02-03.The potential of synthetic mRNA as a genetic carrier has increased its application in scientific fields. Because the 5′ cap regulates the stability and translational activity of mRNAs, there are concerted efforts to search for and synthesize chemically-modified 5′ caps that improve the functionality of mRNA. Here, we report an easy and efficient method to synthesize functional mRNAs by modifying multiple 5′ cap analogs using a vaccinia virus-capping enzyme. We show that this enzyme can introduce a variety of GTP analogs to the 5′ end of RNA to generate 5′ cap-modified mRNAs that exhibit different translation levels. Notably, some of these modified mRNAs improve translation efficiency and can be conjugated to chemical structures, further increasing their functionality. Our versatile method to generate 5′ cap-modified mRNAs will provide useful tools for RNA therapeutics and biological research

    脂肪由来間葉系幹細胞からインスリン産生細胞への分化誘導に際しての皮下および腹腔内脂肪の特性の差異に関する研究

    Get PDF
    The aim of this study was to investigate the characteristics of insulin producing cells (IPCs) differentiated from adipose-tissue derived stem cells (ADSCs) isolated from human subcutaneous and visceral adipose tissues and identify ADSCs suitable for differentiation into efficient and functional IPCs. Subcutaneous and visceral adipose tissues collected from four (4) patients who underwent digestive surgeries at The Tokushima University (000035546) were included in this study. The insulin secretion of the generated IPCs was investigated using surface markers by: fluorescence activated cell sorting (FACS) analysis; cytokine release; proliferation ability of ADSCs; in vitro (glucose-stimulated insulin secretion: (GSIS) test/in vivo (transplantation into streptozotocin-induced diabetic nude mice). The less fat-related inflammatory cytokines secretions were observed (P < 0.05), and the proliferation ability was higher in the subcutaneous ADSCs (P < 0.05). Insulin expression and GISI were higher in the subcutaneous IPCs (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of all mice that received IPCs from subcutaneous fat tissue converted into normo-glycaemia in thirty (30) days post-transplantation (4/4,100%). Transplanted IPCs were stained using anti-insulin and anti-human leukocyte antigen antibodies. The IPCs generated from the ADSCs freshly isolated from the human fat tissue had sufficient insulin secreting ability in vitro and in vivo

    亜鉛イオン濃度変化は脂肪由来幹細胞から作成するインスリン産生細胞の成熟を反映する

    Get PDF
    The generation of insulin-producing cells (IPCs) from pluripotent stem cells could be a breakthrough treatment for type 1 diabetes. However, development of new techniques is needed to exclude immature cells for clinical application. Dithizone staining is used to evaluate IPCs by detecting zinc. We hypothesised that zinc ion (Zn2+) dynamics reflect the IPC maturation status. Human adipose-derived stem cells were differentiated into IPCs by our two-step protocol using two-dimensional (2D) or 3D culture. The stimulation indexes of 2D -and 3D-cultured IPCs on day 21 were 1.21 and 3.64 (P < 0.05), respectively. The 3D-cultured IPCs were stained with dithizone during culture, and its intensity calculated by ImageJ reached the peak on day 17 (P < 0.05). Blood glucose levels of streptozotocin-induced diabetic nude mice were normalised (4/4,100%) after transplantation of 96 3D-cultured IPCs. Zn2+ concentration changes in the medium of 3D cultures had a negative value in the early period and a large positive value in the latter period. This study suggests that Zn2+ dynamics based on our observations and staining of zinc transporters have critical roles in the differentiation of IPCs, and that their measurement might be useful to evaluate IPC maturation as a non-destructive method

    Epigenetic modulation on sphere

    Get PDF
    Background : Cancer stem cell properties are highly relevant to the biology of treatment-resistant cancers. Epigenetic modification regulates gene expressions by chromatin remodeling during malignant transformation. The aim of this study was to elucidate the possible strategy for cancer stem cells focusing on epigenetic modification. Methods : We made cancer sphere from HepG2 cells, and we added Histone deacetylase (HDAC) inhibitor, valproic acid to cancer sphere. And we compared methylation status and the gene expression between normal HepG2 and cancer sphere groups, and between cancer sphere and sphere with HDAC inhibitor treatment groups. Results : Valproic acid (VPA) cancelled this spheroid formation. In comparison between normal HepG2 and cancer sphere, the number of methylation status changes more than 0.1 of beta level was 826 probes, and we could isolate some epithelial-mesenchymal transition (EMT) related genes. And VPA reduced the expressions of EMT related genes in sphere with RT-PCR. On the other hand, in comparison between cancer sphere and sphere with VPA treatment, we detected 29 probe of methylation status change, and VPA reduced the expressions of Bcl-6 in sphere. Conclusions : HDAC inhibitor affected the methylation status of cancer stem cells. Histone-acetylation might overcome treatmet-resistant cancer through the regulation of cancer stem cell

    CAF-INDUCED TAMs PROMOTE HCC PROGRESSION VIA PAI-1

    Get PDF
    Targeting the tumor stroma is an important strategy in cancer treatment. Cancer‑associated fibroblasts (CAFs) and tumor‑associated macrophages (TAMs) are two main components in the tumor microenvironment (TME) in hepatocellular carcinoma (HCC), which can promote tumor progression. Plasminogen activator inhibitor‑1 (PAI‑1) upregulation in HCC is predictive of unfavorable tumor behavior and prognosis. However, the crosstalk between cancer cells, TAMs and CAFs, and the functions of PAI‑1 in HCC remain to be fully investigated. In the present study, macrophage polarization and key paracrine factors were assessed during their interactions with CAFs and cancer cells. Cell proliferation, wound healing and Transwell and Matrigel assays were used to investigate the malignant behavior of HCC cells in vitro. It was found that cancer cells and CAFs induced the M2 polarization of TAMs by upregulating the mRNA expression levels of CD163 and CD206, and downregulating IL‑6 mRNA expression and secretion in the macrophages. Both TAMs derived from cancer cells and CAFs promoted HCC cell proliferation and invasion. Furthermore, PAI‑1 expression was upregulated in TAMs after being stimulated with CAF‑conditioned medium and promoted the malignant behavior of the HCC cells by mediating epithelial‑mesenchymal transition. CAFs were the main producer of C‑X‑C motif chemokine ligand 12 (CXCL12) in the TME and CXCL12 contributed to the induction of PAI‑1 secretion in TAMs. In conclusion, the results of the present study suggested that CAFs promoted the M2 polarization of macrophages and induced PAI‑1 secretion via CXCL12. Furthermore, it was found that PAI‑1 produced by the TAMs enhanced the malignant behavior of the HCC cells. Therefore, these factors may be targets for inhibiting the crosstalk between tumor cells, CAFs and TAMs

    HIF-1α expression in liver metastasis but not primary colorectal cancer is associated with prognosis of patients with colorectal liver metastasis

    Get PDF
    Background: The role of hypoxia-inducible factor-1α (HIF-1α) in primary colorectal cancer (CRC) and colorectal liver metastasis (CRLM) has remained unclear. The aim of this study was to investigate HIF-1α expression and its association with prognosis in patients with CRLM with a focus on hepatic stellate cells (HSCs). Methods: Colon cancer cells were cultured in HSC-conditioned medium (CM), and HIF-1α expression and cell migration were analyzed. Seventy-five patients with CRLM who underwent an initial curative hepatectomy were enrolled. We examined HIF-1α expressions and patient prognosis between primary CRCs and the matched liver metastatic specimens. Results: Activated HSCs induced HIF-1α mRNA and protein expression in colon cancer cells (p < 0.01) and promoted cell migration (p < 0.01). The positive rates of HIF-1α expression in primary CRCs and liver metastases were 68.0 and 72.0%, respectively. There were no differences in overall (OS) and disease-free survival (DFS) of HIF-1α expression in primary CRC. However, HIF-1α expression in liver metastasis correlated to poor prognosis in both OS and DFS. Furthermore, patients with HIF-1α positive expression in liver metastasis had poor prognosis. Conclusion: HIF-1α expression in liver metastasis determines poor prognosis of CRLM patients. HSCs might play a key role in aggressive phenotypes of tumor cells

    Role of Nrf2 in HLC

    Get PDF
    Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1 : day 1-6, Step2 : day 6-11, Step3 : day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC
    corecore