23,273 research outputs found

    Case of Almost Redundant Components in 3 alpha Faddeev Equations

    Get PDF
    The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.Comment: Revtex V4.0, 4 pages, no figure

    Magnetization of a half-quantum vortex in a spinor Bose-Einstein condensate

    Full text link
    Magnetization dynamics of a half-quantum vortex in a spin-1 Bose-Einstein condensate with a ferromagnetic interaction are investigated by mean-field and Bogoliubov analyses. The transverse magnetization is shown to break the axisymmetry and form threefold domains. This phenomenon originates from the topological structure of the half-quantum vortex and spin conservation.Comment: 6 pages, 3 figure

    Disorder-induced double resonant Raman process in graphene

    Get PDF
    An analytical study is presented of the double resonant Raman scattering process in graphene, responsible for the D and D^{\prime} features in the Raman spectra. This work yields analytical expressions for the D and D^{\prime} integrated Raman intensities that explicitly show the dependencies on laser energy, defect concentration, and electronic lifetime. Good agreement is obtained between the analytical results and experimental measurements on samples with increasing defect concentrations and at various laser excitation energies. The use of Raman spectroscopy to identify the nature of defects is discussed. Comparison between the models for the edge-induced and the disorder-induced D band intensity suggests that edges or grain boundaries can be distinguished from disorder by the different dependence of their Raman intensity on laser excitation energy. Similarly, the type of disorder can potentially be identified not only by the intensity ratio ID/IDI_{\mathrm{D}}/I_{\mathrm{D}^{\prime}}, but also by its laser energy dependence. Also discussed is a quantitative analysis of quantum interference effects of the graphene wavefunctions, which determine the most important phonon wavevectors and scattering processes responsible for the D and D^{\prime} bands.Comment: 10 pages, 4 figure

    Enhanced dispersion interaction between quasi-one dimensional conducting collinear structures

    Full text link
    Recent investigations have highlighted the failure of a sum of R6R^{-6} terms to represent the dispersion interaction in parallel metallic, anisotropic, linear or planar nanostructures [J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006) and references therein]. By applying a simple coupled plasmon approach and using electron hydrodynamics, we numerically evaluate the dispersion (non-contact van der Waals) interaction between two conducting wires in a collinear pointing configuration. This case is compared to that of two insulating wires in an identical geometry, where the dispersion interaction is modelled both within a pairwise summation framework, and by adding a pinning potential to our theory leading to a standard oscillator-type model of insulating dielectric behavior. Our results provide a further example of enhanced dispersion interaction between two conducting nanosystems compared to the case of two insulating ones. Unlike our previous work, this calculation explores a region of relatively close coupling where, although the electronic clouds do not overlap, we are still far from the asymptotic region where a single power law describes the dispersion energy. We find that strong differences in dispersion attraction between metallic and semiconducting / insulating cases persist into this non-asymptotic region. While our theory will need to be supplemented with additional short-ranged terms when the electronic clouds overlap, it does not suffer from the short-distance divergence exhibited by purely asymptotic theories, and gives a natural saturation of the dispersion energy as the wires come into contact.Comment: 10 pages, 5 figures. Added new extended numerical calculations, new figures, extra references and heavily revised tex

    Energy Anomaly and Polarizability of Carbon Nanotubes

    Full text link
    The energy of electron Fermi sea perturbed by external potential, represented as energy anomaly which accounts for the contribution of the deep-lying states, is analyzed for massive d = 1+1 Dirac fermions on a circle. The anomaly is a universal function of the applied field, and is related to known field-theoretic anomalies. We express transverse polarizability of Carbon nanotubes via the anomaly, in a way which exhibits the universality and scale-invariance of the response dominated by pi-electrons and qualitatively different from that of dielectric and conducting shells. Electron band transformation in a strong-field effect regime is predicted.Comment: 4 pg

    Quark-Meson Coupling Model for a Nucleon

    Get PDF
    The quark-meson coupling model for a nucleon is considered. The model describes a nucleon as an MIT bag, in which quarks are coupled to scalar and vector mesons. A set of coupled equations for the quark and the meson fields are obtained and are solved in a self-consistent way. It is shown that the mass of a nucleon as a dressed MIT bag interacting with sigma- and omega-meson fields significantly differs from the mass of a free MIT bag. A few sets of model parameters are obtained so that the mass of a dressed MIT bag becomes the nucleon mass. The results of our calculations imply that the self-energy of the bag in the quark-meson coupling model is significant and needs to be considered in doing the nuclear matter calculations.Comment: 3 figure

    Microscopic energy flows in disordered Ising spin systems

    Full text link
    An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier dicretized picture. Then, we work out a linearized "mean-field approximation", where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on a generic discrete structures.Comment: 12 pages, 6 figure

    Variations of Hadron Masses and Matter Properties in Dense Nuclear Matter

    Get PDF
    Using a self-consistent quark model for nuclear matter we investigate variations of the masses of the non-strange vector mesons, the hyperons and the nucleon in dense nuclear matter (up to four times the normal nuclear density). We find that the changes in the hadron masses can be described in terms of the value of the scalar mean-field in matter. The model is then used to calculate the density dependence of the quark condensate in-medium, which turns out to be well approximated by a linear function of the nuclear density. Some relations among the hadron properties and the in-medium quark condensate are discussed.Comment: 22 pages, University of Adelaide preperint ADP-94-20/T160, submitted to Physical Review

    Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interations

    Full text link
    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed.Comment: 11 pages, 5 figures, 2 tables; to appear in Phys. Rev. B; misprints in Eqs.(33) and (34) are correcte

    AC transport in graphene-based Fabry-Perot devices

    Full text link
    We report on a theoretical study of the effects of time-dependent fields on electronic transport through graphene nanoribbon devices. The Fabry-P\'{e}rot interference pattern is modified by an ac gating in a way that depends strongly on the shape of the graphene edges. While for armchair edges the patterns are found to be regular and can be controlled very efficiently by tuning the ac field, samples with zigzag edges exhibit a much more complex interference pattern due to their peculiar electronic structure. These studies highlight the main role played by geometric details of graphene nanoribbons within the coherent transport regime. We also extend our analysis to noise power response, identifying under which conditions it is possible to minimize the current fluctuations as well as exploring scaling properties of noise with length and width of the systems
    corecore