110 research outputs found

    Interfacial Characterization by Pull-Out Test of Bamboo Fibers Embedded in Poly(Lactic Acid)

    Get PDF
    In this work, the apparent shear strength at the interface between a bamboo fiber and the surrounding poly(lactic acid) (PLA) matrix is quantified. A method for processing pull-out test samples within a controlled embedded length is proposed and the details of the test procedure are presented, along with a critical discussion of the results. Two series of samples are considered: untreated and mercerized bamboo fibers from the same batch, embedded in the same polyester matrix. Electron and optical microscopy are used to observe the fiber–matrix interface before and after the test, and to identify the failure mode of each sample, especially as regards the occurrence of fibrillation in the fiber bundles. The values of apparent interfacial shear strength are calculated only for regular fibers successfully pulled out from the matrix, and reported with their statistical variations. Mercerization, whose efficiency was proven by Fourier transform infrared (FTIR) spectroscopy, did not appear though to improve the quality of the interface (Tapp = 7.0 ± 3.1 MPa for untreated fibers and Tapp = 5.3 ± 2.4 MPa for treated fibers)

    Modelling of Physical Ageing in starch using the TNM equation

    Get PDF
    Gelatinised wheat starch, freeze dried and equilibrated at different RH, was aged at different temperatures and for different times. The Tool–Narayanaswamy–Moynihan (TNM) model was used to describe the ageing for all samples under all conditions. Three TNM parameters: x, Dh⁄ and A were determined experimentally using, respectively, the peak shift method (x) and the dependency of T0f (the limiting value of Tf) on the cooling rate (Dh⁄ and A). The non-linearity parameter x and the non exponential parameter b were also estimated by optimising a fit of the experimental normalised specific heat at different ageing times and temperatures to curves generated using the TNM model. The TNM model successfully described the normalised experimental data. It was found that the intermolecular forces were strong and the relaxation times depended more strongly on the glass structure than the glass temperature. The hydration level of the starch had a direct impact of the breadth of the relaxation time distribution. A dependency of the non-linearity parameter x on ageing temperature (peak shift method) was observed. This suggests that physical ageing is more complex than is described by TNM formalism

    Sucrose in the concentrated solution or the supercooled “state” : a review of caramelisation reactions and physical behaviour

    Get PDF
    Sucrose is probably one of the most studied molecules by food scientists, since it plays an important role as an ingredient or preserving agent in many formulations and technological processes. When sucrose is present in a product with a concentration near or greater than the saturation point—i.e. in the supercooled state—it possesses high potentialities for the food industry in areas as different as pastry industry, dairy and frozen desserts or films and coatings production. This paper presents a review on critical issues and research on highly concentrated sucrose solutions—mainly, on sucrose thermal degradation and relaxation behaviour in such solutions. The reviewed works allow identifying several issues with great potential for contributing to significant advances in Food Science and Technology.Authors are grateful for the valuable discussions with Teresa S. Brandao and Rosiane Lopes da Cunha during this research. Author M. A. C. Quintas acknowledges the financial support of her research by FCT grant SFRH/BPD/41715/2007

    Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event

    Get PDF
    The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.This work was funded by FAPESP research grant 2015/50683-2 to P.E. De Oliveira, VULPES Project, Belmount Forum

    A phylogenetic classification of the world’s tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests

    Phylogenetic classification of the world\u27s tropical forests

    Get PDF

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p
    corecore