118 research outputs found
Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon
This paper deals with the dead-water phenomenon, which occurs when a ship
sails in a stratified fluid, and experiences an important drag due to waves
below the surface. More generally, we study the generation of internal waves by
a disturbance moving at constant speed on top of two layers of fluids of
different densities. Starting from the full Euler equations, we present several
nonlinear asymptotic models, in the long wave regime. These models are
rigorously justified by consistency or convergence results. A careful
theoretical and numerical analysis is then provided, in order to predict the
behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit
Guidelines and Recommendations on the Use of Higher OrderFinite Elements for Bending Analysis of Plates
This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3 × 3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions
- …