9,383 research outputs found

    Single File Diffusion enhancement in a fluctuating modulated 1D channel

    Full text link
    We show that the diffusion of a single file of particles moving in a fluctuating modulated 1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favored by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure

    Profile of the Adelaide Centre for the Molecular Genetics of Development

    Get PDF
    Robert Sain

    Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion

    Get PDF
    In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.Comment: 50 pages + 20 figures; submitted to ApJ 9/10/01; a version with higher resolution figures is available at http://cfa-www.harvard.edu/~avrett

    Animal cell division: a fellowship of the double ring?

    Get PDF
    Despite a century of research into the nature of animal cell division, a molecular explanation for the positioning of the actomyosin contractile ring has remained elusive. The discovery of a novel interaction between regulators of Rho family small GTPases has revealed a link between the mitotic microtubules and the contractile ring during the later stages of mitosis. The properties of the interacting Rho regulators suggest a molecular model for the positioning and initiation of contractile ring furrowing in animal cells. In this ‘double ring’ model, centralspindlin complexes, localized by the action of their kinesin-like protein component, position and activate a cortical equatorial ring of Rho GTPase exchange factors. The resulting ring of activated Rho would then trigger a cascade of events leading to formation and constriction of the contractile ring

    Multilevel RTS in proton irradiated CMOS image sensors manufactured in a deep submicron technology

    Get PDF
    A new automated method able to detect multilevel random telegraph signals (RTS) in pixel arrays and to extract their main characteristics is presented. The proposed method is applied to several proton irradiated pixel arrays manufactured using a 0.18um CMOS process dedicated to imaging. Despite the large proton energy range and the large fluence range used, similar exponential RTS amplitude distributions are observed. A mean maximum amplitude independent of displacement damage dose is extracted from these distributions and the number of RTS defects appears to scale well with total nonionizing energy loss. These conclusions allow the prediction of RTS amplitude distributions. The effect of electric field on RTS amplitude is also studied and no significant relation between applied bias and RTS amplitude is observed

    The Drosophila retained/dead ringer gene and ARID gene family function during development

    Get PDF
    © UBC PressThe recently discovered ARID family of proteins interact with DNA through a phylogenetically conserved sequence termed the A/T Interaction Domain (ARID). The retained/dead ringer (retn/dri) gene of Drosophila melanogaster is a founding member of the ARID gene family, and of the eARID subfamily. This subfamily exhibits an extended region of sequence similarity beyond the core ARID motif and a separate conserved domain termed the REKLES domain. retn/dri is involved in a range of developmental processes, including axis patterning and muscle development. The retn/dri ARID motif has been shown by in vitro studies to exhibit sequence-specific DNA binding activity. Here we demonstrate that the ARID domain is essential for the in vivo function of retn/dri during embryonic development by showing that a mutant form of RETN/DRI, deleted for part of the ARID domain and unable to bind DNA in vitro, cannot rescue the retn/dri mutant phenotype. In the presence of wild-type RETN/DRI this construct acts as a dominant negative, providing additional support for the proposal that RETN/DRI acts in a multiprotein complex. In contrast, we are yet to find an in vivo role for the REKLES domain, despite its clear evolutionary conservation. Finally, we have used germline clone analysis to reveal a requirement for retn/dri in the Drosophila preblastoderm syncytial mitoses.Tetyana Shandala, R. Daniel Kortschak and Robert Sain

    A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra

    Full text link
    We study finite loop models on a lattice wrapped around a cylinder. A section of the cylinder has N sites. We use a family of link modules over the periodic Temperley-Lieb algebra EPTL_N(\beta, \alpha) introduced by Martin and Saleur, and Graham and Lehrer. These are labeled by the numbers of sites N and of defects d, and extend the standard modules of the original Temperley-Lieb algebra. Beside the defining parameters \beta=u^2+u^{-2} with u=e^{i\lambda/2} (weight of contractible loops) and \alpha (weight of non-contractible loops), this family also depends on a twist parameter v that keeps track of how the defects wind around the cylinder. The transfer matrix T_N(\lambda, \nu) depends on the anisotropy \nu and the spectral parameter \lambda that fixes the model. (The thermodynamic limit of T_N is believed to describe a conformal field theory of central charge c=1-6\lambda^2/(\pi(\lambda-\pi)).) The family of periodic XXZ Hamiltonians is extended to depend on this new parameter v and the relationship between this family and the loop models is established. The Gram determinant for the natural bilinear form on these link modules is shown to factorize in terms of an intertwiner i_N^d between these link representations and the eigenspaces of S^z of the XXZ models. This map is shown to be an isomorphism for generic values of u and v and the critical curves in the plane of these parameters for which i_N^d fails to be an isomorphism are given.Comment: Replacement of "The Gram matrix as a connection between periodic loop models and XXZ Hamiltonians", 31 page
    • 

    corecore