38 research outputs found

    A Lens Mapping Algorithm for Weak Lensing

    Get PDF
    We develop an algorithm for the reconstruction of the two-dimensional mass distribution of a gravitational lens from the observable distortion of background galaxies. From the measured reduced shear, the lens mapping is obtained, from which a mass distribution is derived. This is unlike other methods where the convergence ("kappa") is directly obtained. We show that this method works best for sub-critical lenses, but can be applied to a critical lens away from the critical lines. For finite fields the usual mass-sheet degeneracy is shown to exist in this method as well. We show that the algorithm reproduces the mass distribution within acceptable limits when applied to simulated noisy data.Comment: 4 pages, 6 figures, uses emulateapj5.sty (included); substantially revised; a slightly shorter version (fewer figures) will appear in Ap.J.Letter

    Non-Gaussianity and direction dependent systematics in HST key project data

    Full text link
    Two new statistics, namely Δχ2\Delta_\chi^2 and Δχ\Delta_\chi, based on extreme value theory, were derived in \cite{gupta08,gupta10}. We use these statistics to study direction dependence in the HST key project data which provides the most precise measurement of the Hubble constant. We also study the non-Gaussianity in this data set using these statistics. Our results for Δχ2\Delta_\chi^2 show that the significance of direction dependent systematics is restricted to well below one σ\sigma confidence limit, however, presence of non-Gaussian features is subtle. On the other hand Δχ\Delta_\chi statistic, which is more sensitive to direction dependence, shows direction dependence systematics to be at slightly higher confidence level, and the presence of non-Gaussian features at a level similar to the Δχ2\Delta_\chi^2 statistic.Comment: 6 pages, 4 figures; accepted for publication in MNRA

    Modal analysis of gravitational instabilities in nearly Keplerian, counter-rotating collisionless discs

    Full text link
    We present a modal analysis of instabilities of counter-rotating, self-gravitating collisionless stellar discs, using the recently introduced modified WKB formulation of spiral density waves for collisionless systems (Gulati \& Saini). The discs are assumed to be axisymmetric and in coplanar orbits around a massive object at the common center of the discs. The mass in both discs is assumed to be much smaller than the mass of the central object. For each disc, the disc particles are assumed to be in near circular orbits. The two discs are coupled to each other gravitationally. The perturbed dynamics of the discs evolves on the order of the precession time scale of the discs, which is much longer than the Keplerian time scale. We present results for the azimuthal wave number m=1m=1 and m=2m=2, for the full range of disc mass ratio between the prograde and retrograde discs. The eigenspectra are in general complex, therefore all eigenmodes are unstable. Eigenfunctions are radially more compact for m=1m = 1 as compared to m=2m = 2. Pattern speed of eigenmodes is always prograde with respect to the more massive disc. The growth rate of unstable modes increases with increasing mass fraction in the retrograde disc, and decreases with mm; therefore m=1m=1 instability is likely to play the dominant role in the dynamics of such systems.Comment: 24 pages, 8 figures, 1 tabl

    Slow pressure modes in thin accretion discs

    Full text link
    Thin accretion discs around massive compact objects can support slow pressure modes of oscillations in the linear regime that have azimuthal wavenumber m=1m=1. We consider finite, flat discs composed of barotropic fluid for various surface density profiles and demonstrate--through WKB analysis and numerical solution of the eigenvalue problem--that these modes are stable and have spatial scales comparable to the size of the disc. We show that the eigenvalue equation can be mapped to a Schr\"odinger-like equation. Analysis of this equation shows that all eigenmodes have discrete spectra. We find that all the models we have considered support negative frequency eigenmodes; however, the positive eigenfrequency modes are only present in power law discs, albeit for physically uninteresting values of the power law index β\beta and barotropic index γ\gamma.Comment: 9 pages, 7 figures, 1 table, accepted in MNRAS for pulicatio

    Reconstructing the Properties of Dark Energy using Standard Sirens

    Full text link
    Future space-based gravity wave experiments such as the Big Bang Observatory (BBO), with their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large number of gravity wave (GW) sources to high precision, and the redshift of the single galaxies in the narrow solid angles towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain the actual source only in 68 per cent cases; the beams that do not contain the source may contain a spurious single galaxy, leading to misidentification. To increase the probability of the source falling within the beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams. Saini, Sethi and Sahni (2010) argued, largely analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-redshift relation, which could be used to further resolve sources that have multiple objects in the angular beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which works in conjunction with Monte-Carlo simulations to determine the luminosity distance to GW sources with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is achieved with no prior information about the nature of dark energy from other data sets such as SN Ia, BAO, CMB etc.Comment: 12 pages, 10 figures. Expanded discussion, additional references. Main results unchanged. Matches published versio

    Decoding X-ray observations from centres of galaxy clusters using MCMC

    Full text link
    We correct for the use of electron densities instead of total gas density in the pressure fits which were used to derive the local free-fall times (tff_{\rm ff}) in the original paper

    Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries

    Full text link
    By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated -- GP) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.Comment: 6 pages, 2 figures, accepted for publication in PR

    Estimation of Cosmological Parameters from HI Observations of Post-reionization Epoch

    Full text link
    The emission from neutral hydrogen (HI) clouds in the post-reionization era (z < 6), too faint to be individually detected, is present as a diffuse background in all low frequency radio observations below 1420 MHz. The angular and frequency fluctuations of this radiation (~ 1 mK) is an important future probe of the large scale structures in the Universe. We show that such observations are a very effective probe of the background cosmological model and the perturbed Universe. In our study we focus on the possibility of determining the redshift space distortion parameter, coordinate distance and its derivative with redshift. Using reasonable estimates for the observational uncertainties and configurations representative of the ongoing and upcoming radio interferometers, we predict parameter estimation at a precision comparable with supernova Ia observations and galaxy redshift surveys, across a wide range in redshift that is only partially accessed by other probes. Future HI observations of the post-reionization era present a new technique, complementing several existing one, to probe the expansion history and to elucidate the nature of the dark energy.Comment: 11 pages, 5 figure
    corecore