41 research outputs found

    Subjectivity associated to the use of rock mass classification in stability analysis of caverns

    Get PDF
    Q and RMR systems of rock mass classifications are widely used around the world to characterize rock mass quality and to estimate preliminary rock support for underground structures like tunnels and caverns. Despite being widely used, the ratings given in these classification systems are highly subjective and are based on the judgment of the site engineers and engineering geologists. While carrying out such characterization, parameters associated with each classification system are reported in a range of values instead of a single value. On the other hand, in recent times, Geological Strength Index (GSI) has been used extensively worldwide while carrying out stability assessments of tunnels and caverns. Through this process, the GSI value is linked to different relationships proposed by different scholars. This manuscript aims to demonstrate the sensitivity of the variation of the rock mass quality ratings and their impact on the assessment of the overall stability condition of underground caverns. The in-depth assessment of the deformation condition is analyzed using numerical modelling for different GSI values from the same rock mass class classified by Q-system. For this purpose, an underground powerhouse cavern located in the higher Himalayan region is considered a case project. The powerhouse cavern is characterized by Q-system values ranging from 3 to 40 and GSI values from 44 to 73. Stability assessments are carried out using combinations of numerical, empirical, analytical, and semi-analytical approaches. The analysis indicated that the cavern remains stable, but the results exhibited notable variation due to the sensitivity of GSI as an input to the analyses. Finally, the limitations of the use of GSI in numerical modelling are comprehensively discussed.publishedVersio

    Assessment of Cross Laminated Timber Markets for Hardwood Lumber

    No full text
    The goal of this study was to assess the potential of using hardwood lumber in CLT manufacturing. The goal was achieved by addressing four specific objectives. The first objective was to collect CLT manufacturers' perspectives for using hardwood lumber in the current manufacturing setup. The second objective was to determine hardwood sawmills' current ability to produce structural grade lumber (SGHL) from low value logs as a product mix through a survey of hardwood lumber producers in the US. The third objective was to conduct a log yield study of SGHL production from yellow poplar (YP) logs to produce 6'' and 8'' width SGHL to match the PRG 320 requirements. The fourth objective was to determine CLTs' production cost using SGHL and compared it with the CLTs manufactured from southern yellow pine (SYP). The results suggest that all three CLT industries visited and interviewed had sufficient technology to produce hardwood CLTs. The production of hardwood CLTs was mainly limited by the quality and quantity of lumber available. The hardwood sawmill survey results indicated that, currently, less than 10% of the sawmills had all the resources required to produce SGHL. The current ability of the sawmills was measured based on the resources necessary to begin SGHL production. Forty percent of the sawmills would require an investment in sawing technology to saw SGHL, 70% would require employing a certified lumber grader, and 80% would require a planer to surface lumber. Another significant finding was the sawmills' willingness to collaborate with other sawmills and lumber manufacturers. More than 50% of sawmills were open to potential collaboration with other stakeholders if necessary, which is crucial to commercializing SGHL for a new market. The log yield study of yellow poplar helped demonstrate that the mixed grade lumber production method to convert lumber from lower quality zones as SGHL yields higher lumber volume for sawmills and at the same time reduces lower-grade lumber volume. On average, SGHL production increased lumber volume by more than 6% compared to only NHLA grade lumber production when 65% of the lumber was converted to SGHL. The volume of lower lumber grades from 2 common and below decreased from an average of 85% to less than 30% when producing SGHL as a product mix with NHLA grade lumber. This study observed more than 95% of SGHL as Number 3 and better lumber grades. At estimated lumber value, 2x6 and 2x8 SGHL and NHLA grade lumber production as product mix from a log generate higher revenue for all log groups except for the diameter 13" logs. A lower percentage of higher-grade lumber was observed for diameter 13’’ logs than other log groups from this experiment, which resulted in lower revenue. Production cost of CLTs was determined based on the lumber value to manufacture 40' x 10' plain panels with different combinations by lumber grade of yellow poplar and southern yellow pine lumber alone. Production cost was determined by assuming that lumber value contributes 40% of CLTs' total production cost. The 3- ply CLT panels were manufactured using S. Selects lumber in a major direction, and No 1-grade lumber in the minor direction from YP had a production cost of 662.56percubicmeter,whichcostonly662.56 per cubic meter, which cost only 643.10 when SYP lumber was used at referenced lumber value. This study concludes that CLT panels from YP cost 3-7 % more than SYP-CLTs at the referenced lumber values.Ph.D.This research aims to expand the hardwood lumber consumption in the US by evaluating the opportunity to manufacture cross-laminated timber (CLTs). First, CLT manufacturing industries were visited to know their current capacity to process hardwood lumber. The results suggest that all three CLT industries had sufficient technology to produce hardwood CLTs, and the production was mainly limited by the quality and quantity of lumber available. Commercially hardwood can be used in CLT manufacturing if it can be used for structural application. Hardwood lumber must meet the structural application's minimum requirements to manufacture the structural grade CLTs, so we surveyed the hardwood sawmills to know if they have the required resources to manufacture the structural grade hardwood lumber (SGHL). Only ten percent of the sawmills had required technology to produce SGHL without additional investments. Production of the SGHL also required to generate more revenue for the hardwood sawmills, so we conducted the log yield study to know how the revenue structure of sawmill operation will change from the mixed grade lumber production. At estimated lumber value, 2x6 and 2x8 SGHL and 1-inch National Hardwood Lumber Association (NHLA) grade lumber production as product mix from logs generate higher revenue for all log groups except for the diameter 13" logs. Finally, the production cost of SGHL from the log yield study was evaluated and used to produce CLTs at 40% production cost from lumber at 15% profit margins for sawmills and compare with southern yellow pines CLTs. The results indicate that yellow poplar CLTs cost 3-7 % more than southern yellow pines CLTs at the referenced lumber values. This study concludes that hardwood lumber can be used in CLT manufacturing, so there is an opportunity for hardwood sawmills to expand the market. The first step for commercial production of hardwood CLTs is to produce SGHL on a commercial scale, given that sawmills can benefit from these new products in the current lumber market and meet the minimum requirements of the CLT raw materials

    Seismic Behaviour of the Low-Rise RC Buildings in Nonlinear Static and Dynamic Analysis

    No full text
    This paper presents the behavior of three different types of irregular low-rise buildings, subjected to earthquake load. The study is performed by numerically modelling the buildings for the linear static analysis. Structural parameters displacements, drift, and storey shear are checked for various time periods of the building. The same models are also analyzed using nonlinear pushover analysis. The model is made nonlinear by introducing the hinges in the beam and column. The execution of nonlinear analysis is done by applying push in X and push in Y directions in controlled displacement mode. After the execution of nonlinear pushover analysis, different colours of hinges were formed, which were used as a basis for the study. The parameters like maximum displacement, max storey drift, and storey shear were computed in both in X and Y directions. Peak ground acceleration of Gorkha earthquake, EI Centro earthquake, and Kobe earthquakes was used for time history analysis. The results for max displacement, base shear, and max storey drift are presented and the comparison is made for the different building models. The study showed that a building behaves well in seismic loading even though they have an irregular plan with a larger structure size, compared to a building that has a regular plan and a smaller structural member size.</jats:p

    Seismic performance of step back, step back set back and set back buildings in sloping ground base

    No full text
    This paper presents the structural behavior of buildings located in the sloping ground level subjected to seismic load. Three different categories of building from three to five storey are considered for the numerical modelling namely set back building (SB), step back building (SBB) and step back set back building (SBSB). The dynamic response of different buildings are analyzed and compared to assess the seismic vulnerability associated with each buildings. The seismic vulnerability is accessed by comparing the base shear, drift, displacement and torsion factor values. Linear static method is used for the calculation of earthquake load using ETABS. It is observed that SBB and SBSB are highly affected by torsion compared to the SB building. It is desirable to use shear wall in periphery of the bottom storey to improve seismic performance of building. The results in this paper can be employed for construction of buildings with seismically active sloping ground.</jats:p

    Producing Structural Grade Hardwood Lumber as a Raw Material for Cross-Laminated Timber: Yield and Economic Analysis

    Get PDF
    The economic feasibility of producing structural-grade hardwood lumber (SGHL) that qualifies as a raw material for structurally rated cross-laminated timber (CLT) was examined. 126 yellow poplar logs from diameters 12 to 15 inches were selected and divided into test and control samples. A log yield study was then conducted of the yield and revenue generated when producing lumber graded with National Hardwood Lumber Association (NHLA) rules, SGHL rules, and a mix of both rules (NHLA and SGHL-graded lumber). Producing mix-grade lumber added approximately 27% more revenue than producing NHLA-grade lumber on average if sawmills adopt a cant sawing method. Mix-grade lumber production resulted in 32% of the total volume produced as SGHL and the remaining 68% as NHLA lumber. As a result, 2 Common and lower-grade lumber board footage was reduced to only 29% in test samples and remained converted into SGHL compared to more than 85% of 2 Common and lower-grade lumber boards for control samples. 95% of the SGHL produced as mixed-graded lumber with NHLA-grade lumber met the specifications required to produce structural CLT, and the remaining 5% can be utilized to produce non-structural grade CLTs if they meet the minimum requirement of the materials for CLT production

    Producing Structural Grade Hardwood Lumber as a Raw Material for Cross-Laminated Timber: Yield and Economic Analysis

    No full text
    The economic feasibility of producing structural-grade hardwood lumber (SGHL) that qualifies as a raw material for structurally rated cross-laminated timber (CLT) was examined. 126 yellow poplar logs from diameters 12 to 15 inches were selected and divided into test and control samples. A log yield study was then conducted of the yield and revenue generated when producing lumber graded with National Hardwood Lumber Association (NHLA) rules, SGHL rules, and a mix of both rules (NHLA and SGHL-graded lumber). Producing mix-grade lumber added approximately 27% more revenue than producing NHLA-grade lumber on average if sawmills adopt a cant sawing method. Mix-grade lumber production resulted in 32% of the total volume produced as SGHL and the remaining 68% as NHLA lumber. As a result, 2 Common and lower-grade lumber board footage was reduced to only 29% in test samples and remained converted into SGHL compared to more than 85% of 2 Common and lower-grade lumber boards for control samples. 95% of the SGHL produced as mixed-graded lumber with NHLA-grade lumber met the specifications required to produce structural CLT, and the remaining 5% can be utilized to produce non-structural grade CLTs if they meet the minimum requirement of the materials for CLT production

    Multi-year Prediction of Rice Yield under the Changing Climatic Scenarios in Nepal Central Terai Using DSSAT Crop Model

    No full text
    NASA-POWER derived weather data of Dumkauli in Nawalparasi (27.68˚ N, 84.13˚E) district in the Nepal central Terai for the past 33-years (1984/85-2017/18) were purposively downloaded and validated with recorded weather data of Department of Hydrology and Meteorology (DHM). The trend analysis for grain yield of rice in Nawalparasi was drawn with the historical data of the maximum and minimum temperatures and rainfall. Positive correlations between grain yields and minimum temperature and rainfall each showed an acceptable coefficient of determination (R2). The CSM-CERES-Rice embedded in DSSAT ver 4.7 was used for multi-year prediction of rice yield using both historically recorded and simulated climatic scenarios. The model simulated results closely agreed with the observed rice yield recorded by the Ministry of Agriculture and Livestock Development (MoALD) in Nepal. The correlation between precipitation and observed rice yield was 0.71 and the correlation between precipitation and observed and DSSAT simulated yield was 0.379. The multi-year predicted rice yield using historical weather data and the DSSAT rice model showed that rice yield could be sustained with the use of the current crop cultivars only for the upcoming few years. The climate index, mainly the rainfall index, was found to be more sensitive to rice production in the Nepal central Terai region. This study suggests for the development of new climate change ready rice cultivars to feed the increasingly growing Nepalese population.</jats:p

    Temperature Compensation for Reusable Piezo Configuration for Condition Monitoring of Metallic Structures: EMI Approach

    No full text
    This paper presents a novel algorithm for compensating the changes in conductance signatures of a piezo sensor due to the temperature variation employed in condition monitoring using the electro-mechanical impedance (EMI) approach. It is crucial to consider the changes in an EMI signature due to temperature before using it for comparison with the baseline signature. The shifts in the signature due to temperature can be misinterpreted as damages to the structure, which might also result in a false alarm. In the present study, the compensation values are calculated based on experiments on piezo sensors both in a free boundary condition and in a bonded condition on a metallic host structure. The values were further validated experimentally for damage detection on a large 2D steel plate structure. The variation in first natural frequency values for the unbonded piezo sensor at different temperatures has been used to develop the compensation algorithms. Whereas, in the case of the bonded sensor, the shift in structural peaks has been used. The developed compensation relations showed promising results in damage detection. Lastly, a finite element-based study has also been performed, supporting the experimental findings. The outcome of this study will aid in the compensation of the signatures in the structure due to temperature variation in the conductance signature.</jats:p
    corecore