2 research outputs found

    Simultaneous Determination of Pyrethroid, Organophosphate and Carbamate Metabolites in Human Urine by Gas Chromatography–Mass Spectrometry (GCMS)

    No full text
    We have developed a rapid, sensitive, and reliable method for simultaneous determination of the urinary metabolites of common insecticides in a single analytical run using gas chromatography–mass spectrometry (GCMS). Thirteen metabolites, one originating from carbamate, six from organophosphates, and seven from pyrethroids, were selected for method validation. Samples at different concentrations (0.5–15 µg/L) were prepared by mixing working solutions containing the analytes with blank urine. After acid hydrolysis for 45 min at 90 °C, samples were processed with liquid–liquid extraction and derivatization by N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) before analysis on GCMS. The limits of detection for all thirteen analytes were below 0.1 µg/L. The recovery rates, evaluated at two concentrations (1, 10 µg/L), were found to be 90.48%, on average. The precision of multiple analyses at three different concentrations (0.5, 5, 15 µg/L) within one day or between 10 days was evaluated, and the resultant relative standard deviations were 8.1% or under. We also applied this method to analyze genuine urine samples collected from 30 human subjects, and successfully detected all the metabolites, with detection frequencies more than 50% for pyrethroid metabolites. In summary, this method is not only as good as others in performance, but is advantageous in terms of cost effectiveness and multiplicity of analytes

    Relationship between Organophosphate and Pyrethroid Insecticides in Blood and Their Metabolites in Urine: A Pilot Study

    No full text
    We conducted a pilot study to examine the relationship between organophosphate (OP) and pyrethroid (PYR) insecticides in blood and their metabolites in urine. A total of 30 pregnant women were enrolled in the study, and blood and urine was sampled from each subject during a regular clinic visit. Two OP and nine PYR insecticides were selected for blood sample analysis, while six OP and five PYR metabolites were analyzed for urine specimens. Both types of samples were processed and analyzed on gas chromatography-mass spectrometry. For OPs in blood, chlorpyrifos had a higher mean concentration (73.33 µg/L) than terbufos. For PYRs in blood, cypermethrin and imiprothrin were the most frequently detected species with the highest mean concentrations (151.25 and 141.25 µg/L). The concentrations of PYRs appeared to be higher than that of OPs, and the most frequently detected PYRs were commonly used in domestic products, suggesting that the exposure could mostly originate from use of domestic insecticides. The correlation between insecticides in blood and their metabolites in urine was significantly high (r = 0.795 for OPs and 0.882 for PYRs, p < 0.001), indicating routine exposure at a steady state. Residents should be cautious with domestic use of insecticide products to lower their exposure
    corecore