2 research outputs found

    Not Available

    No full text
    Not AvailableMethyl farnesoate (MF), a sesquiterpenoid synthesized in the mandibular organ, regulates many physiological processes in crustaceans including growth and reproduction. In the present study, farnesoic acid O-methyltransferase (FAMeT), the key enzyme responsible for final step conversion of farnesoic acid (FA) to methyl farnesoate (MF), was cloned and characterized from the nervous tissues of Penaeus indicus. Multiple sequence alignment, prediction of conserved domain regions, phosphorylation sites identification and phylogenetic analysis indicated that putative FAMeT fragment from P. indicus (PiFAMeT), shares a high degree of sequence identity to FAMeT proteins isolated from other crustaceans species. Quantitative real-time PCR analysis revealed ubiquitous expression of PiFAMeT in all the tissues examined, with comparative higher mRNA levels in nervous tissue and ovary. Additionally, the levels of PiFAMeT also showed gradual increase of expression correlating with the advancement in ovarian maturation. Further to support their role in promoting ovarian development, serotonin treatment (5HT, 50 μg/g body weight) was given to eyestalk intact and unilaterally eyestalk ablated females which resulted in significant increase in PiFAMeT transcript levels at day 7 and day 14. The relatively higher levels of PiFAMeT, reflecting higher levels of MF, suggest a role during secondary vitellogenesis thereby regulating ovarian development in P. indicus. Further research is required to understand the synergistic interaction of MF pathways with serotonergic and other regulatory pathways in regulating ovarian maturation in penaeid shrimps.Department of Biotechnology, Government of Indi

    Not Available

    No full text
    Not AvailableSolute carrier proteins (SLC) are essential membrane transport proteins responsible for transporting lipids, amino acids, sugars, neurotransmitters, and drugs across the biological membranes. Dysfunction of these carrier proteins may lead to an imbalance of biological mechanisms and also in the failure of the transporting pathways of several signaling neurotransmitters. In the present study, a 646 bp of a solute carrier protein (SLC15A4) was cloned and sequenced from the Indian white shrimp, Penaeus indicus. Multiple sequence alignment using ClustalW and phylogenetic analysis of putative SLC15A4 fragment from P. indicus (PiSLC15A4) was performed using Mega X tool. Tissue distribution analysis was carried out using real-time PCR. The diferential expressions of PiSLC15A4 were also analyzed in the ovaries and brain tissues of wild-caught female shrimps at diferent maturation stages and in the brain tissues of captive females subjected to induce maturation by eyestalk ablation. Signifcant diversity in SLC15A4 sequence obtained from P. indicus was observed when compared to the other species. Tissue distribution analysis confrmed the ubiquitous expression of PiSLC15A4 in all the tissues examined. The diferential expressions of PiSLC15A4 indicated higher expression of the gene in brain tissue of females at the vitellogenic stage, while the expressions in ovaries were signifcantly higher in the immature stage. The diferential expressions of PiSLC15A4 in the brain tissues were substantially higher in eyestalk ablated shrimps compared to the eyestalk intact females. The study suggests a role for SLC15A4 in the endocrine signaling pathways stimulating ovarian maturation in P. indicus.Not Availabl
    corecore