2 research outputs found

    Cellulose Based Genoassays for the Detection of Pathogen DNA

    Get PDF
    Simple, reliable and cost-effective methods for detecting pathogens are a vital part of diagnostics inside and outside the clinic, in particular in the developing world. Paper based colorimetric techniques are a promising approach for biosensors and bioassays as they can be used at the point of sampling and require little equipment. This study reports on the development of a colorimetric cellulose bioassay that can detect pathogen DNA with covalently attached single-stranded DNA probes. Chemical activation of cellulose via tosylation and oxidation was investigated. The successful activation of cellulose was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy and elemental analysis. Sulfhydryl and amine functionalised oligonucleotide probes complementary to a segment of IS6110 element in Mycobacterium tuberculosis genome were covalently immobilised on the cellulose strips for recognition of target nucleic acid. The detection of biotinylated target oligonucleotides was achieved with horseradish peroxidase (HRP) linked to streptavidin that binds biotin with high affinity. HRP catalysed the oxdidation of tetramethylbenzidine by hydrogen peroxide. The successful assay was confirmed by the appearance of blue coloured spots on cellulose strips incubated with biotinylated target oligonucleotides complementary to the surface attached probe. The study also showed that tosylated cellulose is more reliable for the detection of targets. Initial experiments have shown sensitivity upto 0.1 µM and considerable specificity. High probe immobilization efficiencies (>90%) have been observed. The assay was also effectively demonstrated with mycobacterial DNA. Additionally, the development of a label free assay based on a dual-probe approach was investigated, but did not yield conclusive results. The developed assay has the potential for use as a simple test for the detection of pathogen DNA in clinical samples since it requires minimal equipment and is cost effective. In addition, it also shows the potential use of tosylated cellulose as a prospective surface for attaching other types of biomolecules in an active conformation.

    A cellulose-based bioassay for the colorimetric detection of pathogen DNA

    Get PDF
    Cellulose-paper-based colorimetric bioassays may be used at the point of sampling without sophisticated equipment. This study reports the development of a colorimetric bioassay based on cellulose that can detect pathogen DNA. The detection was based on covalently attached single-stranded DNA probes and visual analysis. A cellulose surface functionalized with tosyl groups was prepared by the N,N-dimethylacetamide-lithium chloride method. Tosylation of cellulose was confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. Sulfhydryl-modified oligonucleotide probes complementary to a segment of the DNA sequence IS6110 of Mycobacterium tuberculosis were covalently immobilized on the tosylated cellulose. On hybridization of biotin-labelled DNA oligonucleotides with these probes, a colorimetric signal was obtained with streptavidin-conjugated horseradish peroxidase catalysing the oxidation of tetramethylbenzamidine by H2O2. The colour intensity was significantly reduced when the bioassay was subjected to DNA oligonucleotide of randomized base composition. Initial experiments have shown a sensitivity of 0.1 μM. A high probe immobilization efficiency (more than 90 %) was observed with a detection limit of 0.1 μM, corresponding to an absolute amount of 10 pmol. The detection of M. tuberculosis DNA was demonstrated using this technique coupled with PCR for biotinylation of the DNA. This work shows the potential use of tosylated cellulose as the basis for point-of-sampling bioassays.Peer reviewedFinal Accepted Versio
    corecore