14 research outputs found

    スタチンはYAP制御を介してゲムシタビンの肝内胆管癌抑制効果を増強させる

    Get PDF
    Cholangiocarcinoma (CCA) is associated with high mortality rates because of its resistance to conventional gemcitabine-based chemotherapy. Hydroxy-methyl-glutaryl-coenzyme A reductase inhibitors (statins) reportedly exert anti-cancer effects in CCA and lower the risk of CCA; however, the underlying mechanism of these effects remains unclear. The proliferative and oncogenic activities of the transcriptional co-activator Yes-associated protein (YAP) are driven by its association with the TEA domain (TEAD) of transcription factors; thereby, upregulating genes that promote cell growth, inhibit apoptosis, and confer chemoresistance. This study investigated the effects of atorvastatin in combination with gemcitabine on the progression of human CCA associated with YAP oncogenic regulation. Both atorvastatin and gemcitabine concentration-dependently suppressed the proliferation of HuCCT-1 and KKU-M213 human CCA cells. Moreover, both agents induced cellular apoptosis by upregulating the pro-apoptotic marker BAX and downregulating the anti-apoptotic markers MCL1 and BCL2. Atorvastatin also significantly decreased the mRNA expression of the TEAD target genes CTGF, CYR61, ANKRD1, and MFAP5 in both CCA cell lines. A xenograft tumor growth assay indicated that atorvastatin and gemcitabine potently repressed human CCA cell-derived subcutaneous tumor growth by inhibiting YAP nuclear translocation and TEAD transcriptional activation. Notably, the anti-cancer effects of the individual agents were significantly enhanced in combination. These results indicate that gemcitabine plus atorvastatin could serve as a potential novel treatment option for CCA.博士(医学)・甲第778号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    リポポリサッカライドの外因性投与はコリン欠乏 L-アミノ酸置換食誘発脂肪性肝炎モデルマウスにおいて肝線維化を促進する

    Get PDF
    Various rodent models have been proposed for basic research; however, the pathogenesis of human nonalcoholic steatohepatitis (NASH) is difficult to closely mimic. Lipopolysaccharide (LPS) has been reported to play a pivotal role in fibrosis development during NASH progression via activation of toll-like receptor 4 (TLR4) signaling. This study aimed to clarify the impact of low-dose LPS challenge on NASH pathological progression and to establish a novel murine NASH model. C57BL/6J mice were fed a choline-deficient l-amino-acid-defined (CDAA) diet to induce NASH, and low-dose LPS (0.5 mg/kg) was intraperitoneally injected thrice a week. CDAA-fed mice showed hepatic CD14 overexpression, and low-dose LPS challenge enhanced TLR4/NF-κB signaling activation in the liver of CDAA-fed mice. LPS challenge potentiated CDAA-diet-mediated insulin resistance, hepatic steatosis with upregulated lipogenic genes, and F4/80-positive macrophage infiltration with increased proinflammatory cytokines. It is noteworthy that LPS administration extensively boosted pericellular fibrosis with the activation of hepatic stellate cells in CDAA-fed mice. Exogenous LPS administration exacerbated pericellular fibrosis in CDAA-mediated steatohepatitis in mice. These findings suggest a key role for LPS/TLR4 signaling in NASH progression, and the authors therefore propose this as a suitable model to mimic human NASH.博士(医学)・甲第738号・令和2年3月16日© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    アンギオテンシン受容体を遮断することによりYes関連蛋白質の発癌活性が阻害されて胆管癌細胞増殖が抑制される

    Get PDF
    Cholangiocarcinoma (CCA) is a destructive malignancy with limited responsiveness to conventional chemotherapy. Although angiotensin receptor blockers (ARBs) have gained attention for their potential anticancer activity, little is known about their effects on CCA. The transcriptional co-activator, Yes-associated protein (YAP) is a critical oncogene in several cancers, including CCA. Following recent evidence showing that YAP is regulated by angiotensin II (AT-II), we investigated the effects of an ARB, losartan, on two human CCA cell lines (KKU-M213 and HuCCT-1) with regards to YAP oncogenic regulation. Losartan suppressed AT-II-induced CCA cell proliferation in a dose-dependent manner, induced apoptosis, decreased YAP (Ser127), and downregulated the YAP target genes CTGF, CYR61, ANKRD1, and MFAP5. However, losartan did not affect epithelial-mesenchymal transition, differentiation, or stemness in the CCA cells. Xenograft tumor growth assay showed that oral administration of a low clinical dose of losartan considerably reduced subcutaneous tumor burden and attenuated intratumor vascularization in CCA cell-derived xenograft tumors in BALB/c nude mice. These results indicate that ARB therapy could serve as a potential novel strategy for CCA treatment.博士(医学)・甲第728号・令和2年3月16日Copyright © 2018 Elsevier B.V. All rights reserved

    スルフォラファンの肝癌発育抑制効果および血管新生抑制効果に関する基礎的検討

    Get PDF
    Sulforaphane (SFN) exhibits inhibitory effects in different types of cancers. However, its inhibitory effect on liver cancer remains unknown. This study aimed to determine the therapeutic potential of SFN for the treatment of liver cancer and explore the functional mechanisms underlying the inhibitory effects of SFN. Water-Soluble Tetrazolium salt (WST-1) assay was performed to assess the in vitro effect of SFN on cell proliferation in the human liver cancer cell lines, HepG2 and Huh-7. The mRNA levels of Nrf2 target genes and cell cycle-related genes were determined using quantitative RT-PCR. For assessing the inhibitory effect of SFN in vivo, we injected immortalized liver cancer cells into BALB/c nude mice as a xenograft model. SFN was orally administrated daily after tumor inoculation and continued for thirty-five days until their sacrifices. Nrf2 activation, induced by SFN, was confirmed by mRNA upregulation of HO-1, MRP2, and NQO1 in both the cell lines. Significant inhibition of liver cancer cell proliferation by SFN was shown in vitro in a dose-dependent manner by the downregulation of CCND1, CCNB1, CDK1 and CDK2. In in vivo studies, the administration of SFN significantly reduced the subcutaneous tumor burdens at the end of experiments by suppressing tumor cell proliferation, confirmed by Ki67 immunohistochemical analysis. The mRNA levels of CCND1, CCNB1, CDK1 and CDK2 were also decreased in these SFNtreated xenograft tumors. Moreover, CD34 immunostaining elucidated that the intratumoral neovascularization was markedly attenuated in the SFN-treated xenograft tumors. SFN exerts inhibitory effect on human liver cancer cells with antiangiogenic activity. The earlier version of this study was presented at the meeting of AASLD Liver Learning on Oct 2017.博士(医学)・甲第707号・平成31年3月15日© The Author(s) 2018 Under License of Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/3.0

    L-カルニチンとアンギオテンシン-II1型受容体遮断薬の組み合わせは、非アルコール性脂肪肝炎ラットモデルにおける肝線維症に有益な効果を有する

    Get PDF
    Inflammation and oxidative stress contribute to the progression of nonalcoholic steatohepatitis (NASH). Hepatic fibrosis and activated hepatic stellate cells (Ac-HSCs) are attenuated by Angiotensin-II type 1 Receptor Blocker (ARB), and L-carnitine is effective for NASH by ameliorating oxidative stress, but neither agent is effective in a clinical setting. We evaluated the effect of the combination of L-carnitine and ARB on liver fibrosis using a rat NASH model. A Choline-Deficient/L-Amino Acid-defined (CDAA) diet was fed to F344 rats for 8 weeks. The rats were then divided into a control group, group receiving L-carnitine or ARB alone, and group receiving L-carnitine plus ARB. Therapeutic efficacy was assessed by evaluating liver fibrosis, liver fatty acid metabolism, and oxidative stress. ARB inhibited liver-specific tumor necrotic factor-α and LPS-binding protein, which are involved in hepatic inflammation. L-Carnitine reduced hepatic oxidative stress by rescuing hepatic sterol-regulatory elementbinding protein 1 and thiobarbituric acid reactive substances induced by the CDAA diet. Combination of L-carnitine and ARB improved liver fibrosis, with concomitant HSC suppression. Therefore, we suggest that L-carnitine and ARB are effective in suppressing liver fibrosis. Currently both drugs are in clinical use, and a combination of the two could be an effective therapy for NASH fibrosis.博士(医学)・甲第736号・令和2年3月16日Copyright © 2019 Hideto Kawaratani, Biomed J Sci & Tech Res. This is an openaccess article distributed under the terms of the Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)

    エスジーエルティー2阻害薬(カナグリフロジン)およびジペプチジルペプチダーゼ4阻害薬(テネリグリプチン)との併用療法は非糖尿病ラットモデルにおける非アルコール性脂肪肝炎の進行を抑制する

    Get PDF
    Hepatocellular carcinoma (HCC) is the strongest independent predictor of mortality in non-alcoholic steatohepatitis (NASH)-related cirrhosis. The effects and mechanisms of combination of sodium-dependent glucose cotransporter inhibitor and canagliflozin (CA) and dipeptidyl peptidase-4 inhibitor and teneligliptin (TE) on non-diabetic NASH progression were examined. CA and TE suppressed choline-deficient, L-amino acid-defined diet-induced hepatic fibrogenesis and carcinogenesis. CA alone or with TE significantly decreased proinflammatory cytokine expression. CA and TE significantly attenuated hepatic lipid peroxidation. In vitro studies showed that TE alone or with CA inhibited cell proliferation and TGF-β1 and α1 (I)-procollagen mRNA expression in Ac-HSCs. CA+TE inhibited liver fibrogenesis by attenuating hepatic lipid peroxidation and inflammation and by inhibiting Ac-HSC proliferation with concomitant attenuation of hepatic lipid peroxidation. Moreover, CA+TE suppressed in vivo angiogenesis and oxidative DNA damage. CA or CA+TE inhibited HCC cells and human umbilical vein endothelial cell (HUVEC) proliferation. CA+TE suppressed vascular endothelial growth factor expression and promoted increased E-cadherin expression in HUVECs. CA+TE potentially exerts synergistic effects on hepatocarcinogenesis prevention by suppressing HCC cell proliferation and angiogenesis and concomitantly reducing oxidative stress and by inhibiting angiogenesis with attenuation of oxidative stress. CA+TE showed chemopreventive effects on NASH progression compared with single agent in non-diabetic rat model of NASH, concurrent with Ac-HSC and HCC cell proliferation, angiogenesis oxidative stress, and inflammation. Both agents are widely, safely used in clinical practice; combined treatment may represent a potential strategy against NASH.博士(医学)・甲第765号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    肝線維化に対するファルネソイドX受容体アゴニストとジペプチジルペプチダーゼ-4阻害薬の併用効果

    Get PDF
    Aim: Non-alcoholic steatohepatitis (NASH) has a broad clinicopathological spectrum (inflammation to severe fibrosis). The farnesoid X receptor agonist obeticholic acid (OCA) ameliorates the histological features of NASH; satisfactory antifibrotic effects have not yet been reported. Here, we investigated the combined effects of OCA + a dipeptidyl peptidase-4 inhibitor (sitagliptin) on hepatic fibrogenesis in a rat model of NASH. Methods: Fifty Fischer 344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet for 12 weeks. The in vitro and in vivo effects of OCA + sitagliptin were assessed along with hepatic fibrogenesis, lipopolysaccharide-Toll-like receptor 4 (TLR4) regulatory cascade and intestinal barrier function. Direct inhibitory effects of OCA + sitagliptin on activated hepatic stellate cells (Ac-HSCs) were assessed in vitro. Results: Treatment with OCA + sitagliptin potentially inhibited hepatic fibrogenesis along with Ac-HSC proliferation and hepatic transforming growth factor (TGF)-β1, α1(I)-procollagen, and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression and hydroxyproline levels. Obeticholic acid inhibited hepatic TLR4 expression and increased hepatic matrix metalloproteinase-2 expression. Obeticholic acid decreased intestinal permeability by ameliorating CDAA diet-induced zonula occludens-1 disruption, whereas sitagliptin directly inhibited Ac-HSC proliferation. The in vitro suppressive effects of OCA + sitagliptin on TGF-β1 and α1(I)-procollagen mRNA expression and p38 phosphorylation in Ac-HSCs were almost consistent. Sitagliptin directly inhibited the regulation of Ac-HSC. Conclusions: Treatment with OCA + sitagliptin synergistically affected hepatic fibrogenesis by counteracting endotoxemia induced by intestinal barrier dysfunction and suppressing Ac-HSC proliferation. Thus, OCA + sitagliptin could be a promising therapeutic strategy for NASH.博士(医学)・甲第737号・令和2年3月16日© 2019 The Japan Society of HepatologyThis is the peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1111/hepr.13385], which has been published in final form at [https://doi.org/10.1111/hepr.13385]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Late-Evening Snack with Branched-Chain Amino Acid-Enriched Nutrients Does Not Always Inhibit Overt Diabetes in Patients with Cirrhosis: A Pilot Study

    No full text
    Cirrhosis patients often have abnormal glucose metabolism. We investigated the effects of a late-evening snack (LES) with branched-chain amino acid-enriched nutrients (BCAA-EN) on glucose metabolism in cirrhosis patients. LES with BCAA-EN was administered for 1 week in 13 patients with cirrhosis and hypoalbuminemia. Blood glucose (BG) levels were measured every 15 min. The patients were divided into two groups based on BG levels: group 1 (G1, n = 11): nocturnal BG levels <200 mg/dL and group 2 (G2, n = 2): nocturnal BG levels ≥200 mg/dL. G1 had nocturnal BG levels <200 mg/dL, whereas G2 had nocturnal BG levels ≥200 mg/dL. The average BG levels did not significantly change after BCAA-EN administration in G1 (before 91.9 ± 29.0 mg/dL; after 89.0 ± 24.3 mg/dl). However, the average BG levels significantly increased after BCAA-EN administration in G2 (before 153.6 ± 43.3 mg/dL; after 200.9 ± 59.7 mg/dL) (p < 0.01). The glycated albumin level (16.6 ± 0.9% vs. 16.2 ± 2.1%), fasting immunoreactive insulin (F-IRI) level (53.9 ± 34.0 μU/mL vs. 16.5 ± 11.0 μU/mL), and homeostasis model assessment of insulin resistance (HOMA-IR) score (17.85 ± 10.58 vs. 4.02 ± 2.59) were significantly higher in G2 than in G1 (p < 0.05, p < 0.05, and p < 0.01, respectively). The quantitative insulin sensitivity check indices (0.32 ± 0.03 vs. 0.27 ± 0.02) were significantly higher in G1 than in G2 (p < 0.01). One patient in G2 was obese and had type 2 diabetes. The other patient was obese and had a high HOMA-IR score and F-IRI level. A LES with BCAA-EN does not inhibit overt diabetes in most cirrhosis patients. However, close attention should be paid to fluctuations in BG levels in cirrhosis patients who present with obesity and severe insulin resistance
    corecore