34 research outputs found

    PATHOGENESIS OF INFLUENZA A VIRUS: INHIBITION OF MONOCYTE DIFFERETIATION INTO DENDRITIC CELL

    Get PDF
    Dendritic cells (DC) are a heterogeneous population of hematopoietic cells that play a versatile role in orchestrating immune responses against an array of invading pathogens, including influenza virus. These cells reside in lymphoid organs as well as in non-lymphoid tissues such as mucosal surfaces of respiratory and gastro-intestinal system. Recent investigations have suggested that in the steady state, dendritic cells are derived mainly from bone marrow precursor cells without a monocytic intermediate whereas during inflammation or infection, monocytes readily differentiate to generate monocyte derived dendritic cells (MoDC). The ability of virus infected monocytes to differentiate into MoDC was investigated and the results demonstrated that in vitro infection of monocytes with influenza virus impaired their development into MoDC. It was also observed that influenza infection of monocytes, pre-treated with GM-CSF and IL-4 for DC differentiation, was minimally-productive and non-cytopathic. In spite of successful viral genome transcription, viral protein synthesis was restricted at an early stage. However, despite of the limited replication, influenza virus infected monocytes failed to develop the distinctive DC- like morphology when cultured with GM-CSF and IL- 4 as compared to their mock infected counterparts. Infected cells, after 4 days in culture, expressed reduced amounts of CD11c, CD172a (myeloid marker), CD1w2 (CD1b) and CCR5. Influenza virus infected monocytes also retained substantial non-specific esterase activity, a characteristic for monocytes and macrophages. Antigen presentation capability of infected cells was also affected as indicated by decreased endocytosis. Production of IL-12, a pro-inflammatory cytokine and IL-10, a reciprocal inhibitory cytokine, was coordinately modified in influenza virus infected monocytes in order to arrest their differentiation into DCs. At least limited viral replication was necessary to impede the differentiation process completely. However, viral NS1 protein activity, as evidenced with a mutant influenza virus, was not essential for this inhibition. This identified a new strategy by influenza virus to interfere with DC differentiation and evade a virus specific immune response

    Heterogeneous loss of HIV transcription and proviral DNA from 8E5/LAV lymphoblastic leukemia cells revealed by RNA FISH:FLOW analyses

    Get PDF
    8E5/LAV cells harbor a single HIV provirus, and are used frequently to generate standards for HIV genome quantification. Using flow cytometry-based in situ mRNA hybridization validated by qPCR, we find that different batches of 8E5 cells contain varying numbers of cells lacking viral mRNA and/or viral genomes. These findings raise concerns for studies employing 8E5 cells for quantitation, and highlight the value of mRNA FISH and flow cytometry in the detection and enumeration of HIV-positive cells

    TZM-gfp cells: a tractable fluorescent tool for analysis of rare and early HIV-1 infection

    Get PDF
    Here we describe TZM-gfp, a novel HIV-1 reporter cell derived from the same parental clone JC.53, used previously to generate the widely-utilized indicator cell line TZM-bl. We re-engineered JC.53 cells to express GFP under regulation of HIV Tat and Rev. We characterize the new reporter cell line to show that TZM-gfp cells are equally susceptible to HIV infection, exhibit minimal background signal, and can report HIV infection in rare cells from a bulk population of experimentally-infected human monocyte-derived macrophages. We demonstrate the utility and sensitivity of the cells in detection of even a single HIV-positive macrophage by fluorescence-assisted correlative electron microscopy, using the GFP signal to guide imaging of HIV virions in primary co-culture. Finally, we used TZM-gfp cells for viral capture during co-culture with human peripheral blood mononuclear cells, showing that TZM-gfp can support outgrowth and analyses of patient-derived primary HIV-1 isolates

    Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection.

    Get PDF
    Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG–FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression
    corecore