1,182 research outputs found
Designing GHG Emissions Trading Institutions in the Kyoto Protocol: an Experimental Approach.
We re-evaluate two experiments by Hizen and Saijo (1999a,b) to examine the performance of bilateral trading and double auction institutiions in GHG emissions trading.EXPERIMENTS ; ENVIRONEMENT ; NATURAL RESOURCES
Price Desclosure, Marginal Abatement Cost Information and Market Power in a Bilateral GHG Emissions Trading Experiment.
We conducted an experiment to examine the performance of the bilateral trading institution in GHG emissions trading. First, we found that the efficiency of bilateral trading is quite high, regardless of the disclosure or closure of contracted price and/or marginal abatement cost curve information. Second, marginal abatement costs are equalized over time. Third, on the other hand, contracted prices did not converge to the competitive price over time. Fourth, subjects who had market power did not use it.TRADE ; PRICES ; COSTS ; COMPETITION
Who would get Gains from EU's Quantity Restraint on Emissions Trading in the Kyoto Protocol?.
The EU proposal on the quantity restraint of the emissions trading in the Kyoto Protocol aims at reducing the so called hot air that would be generated by the purchase of emissions permits sold by a country whose actual emissions are much lower than the assigned amount. In this paper we show that no quantity restraint of all demanders is not a subgame perfect equilibrium, but quantity restraints with a least one country constitute the equilibria.EXPERIMENTS ; ENVIRONMENT ; NATURAL RESOURCES
Dynamic black holes through gravitational collapse: Analysis of multipole moment of the curvatures on the horizon
We have investigated several properties of rapidly rotating dynamic black
holes generated by gravitational collapse of rotating relativistic stars. At
present, numerical simulations of the binary black hole merger are able to
produce a Kerr black hole of J_final / M_final^2 up to = 0.91, of gravitational
collapse from uniformly rotating stars up to J_final / M_final^2 ~ 0.75, where
J_final is the total angular momentum and M_final the total gravitational mass
of the hole. We have succeeded in producing a dynamic black hole of spin
J_final / M_final^2 ~ 0.95 through the collapse of differentially rotating
relativistic stars. We have investigated those dynamic properties through
diagnosing multipole moment of the horizon, and found the following two
features. Firstly, two different definitions of the angular momentum of the
hole, the approximated Killing vector approach and dipole moment of the current
multipole approach, make no significant difference to our computational
results. Secondly, dynamic hole approaches a Kerr by gravitational radiation
within the order of a rotational period of an equilibrium star, although the
dynamic hole at the very forming stage deviates quite far from a Kerr. We have
also discussed a new phase of quasi-periodic waves in the gravitational
waveform after the ringdown in terms of multipole moment of the dynamic hole.Comment: 13 pages with 19 figures, revtex4-1.cls. Accepted for publication in
the Physical Review
Possible direct method to determine the radius of a star from the spectrum of gravitational wave signals
We computed the spectrum of gravitational waves from a dust disk star of
radius R inspiraling into a Kerr black hole of mass M and specific angular
momentum a. We found that when R is much larger than the wave length of the
quasinormal mode, the spectrum has several peaks and the separation of peaks
is proportional to irrespective of M and a. This
suggests that the radius of the star in coalescing binary black hole - star
systems may be determined directly from the observed spectrum of gravitational
wave. This also suggests that the spectrum of the radiation may give us
important information in gravitational wave astronomy as in optical astronomy.Comment: 4 pages with 3 eps figures, revtex.sty, accepted for publication in
Phys. Rev. Let
A Novel Role of the NRF2 Transcription Factor in the Regulation of Arsenite-Mediated Keratin 16 Gene Expression in Human Keratinocytes
Reproduced with permission from Environmental Health Perspectives
publisherBACKGROUND: Inorganic sodium arsenite (iAs) is a ubiquitous environmental contaminant and is associated with an increased risk of skin hyperkeratosis and cancer. OBJECTIVES: We investigated the molecular mechanisms underlying the regulation of the keratin 16 (K16) gene by iAs in the human keratinocyte cell line HaCaT. METHODS: We performed reverse transcriptase polymerase chain reaction, luciferase assays, Western blots, and electrophoretic mobility shift assays to determine the transcriptional regulation of the K16 gene by iAs. We used gene overexpression approaches to elucidate the nuclear factor erythroidderived2 related factor 2 (NRF2) involved in the K16 induction. RESULTS: iAs induced the mRNA and protein expression of K16. We also found that the expression of K16 was transcriptionally induced by iAs through activator protein-1–like sites and an antioxidant response element (ARE) in its gene promoter region. Treatment with iAs also enhanced the production and translocation of the NRF2 transcription factor, an ARE-binding protein, into the nucleus without modification of its mRNA expression. In addition, iAs elongated the half-life of the NRF2 protein. When overexpressed in HaCaT cells, NRF2 was also directly involved in not only the up-regulation of the detoxification gene thioredoxin but also K16 gene expression.CONCLUSIONS: Our data clearly indicate that the K16 gene is a novel target of NRF2. Furthermore, our findings also suggest that NRF2 has opposing roles in the cell―in the activation of detoxification pathways and in promoting the development of skin disorders
- …