23 research outputs found

    Daily rhythm in cortical chloride homeostasis underpins functional changes in visual cortex excitability

    Get PDF
    Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability

    A systems view of spliceosomal assembly and branchpoints with iCLIP.

    Get PDF
    Studies of spliceosomal interactions are challenging due to their dynamic nature. Here we used spliceosome iCLIP, which immunoprecipitates SmB along with small nuclear ribonucleoprotein particles and auxiliary RNA binding proteins, to map spliceosome engagement with pre-messenger RNAs in human cell lines. This revealed seven peaks of spliceosomal crosslinking around branchpoints (BPs) and splice sites. We identified RNA binding proteins that crosslink to each peak, including known and candidate splicing factors. Moreover, we detected the use of over 40,000 BPs with strong sequence consensus and structural accessibility, which align well to nearby crosslinking peaks. We show how the position and strength of BPs affect the crosslinking patterns of spliceosomal factors, which bind more efficiently upstream of strong or proximally located BPs and downstream of weak or distally located BPs. These insights exemplify spliceosome iCLIP as a broadly applicable method for transcriptomic studies of splicing mechanisms

    Evaluation of the Orally Bioavailable 4-Phenylbutyrate-Tethered Trichostatin a Analogue AR42 in Models of Spinal Muscular Atrophy

    Get PDF
    Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn−/−) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling

    Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs

    Get PDF
    Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival motor neuron (SMN) protein. SMN together with Gemins2-8 and unrip proteins form a macromolecular complex that functions in the assembly of small nuclear ribonucleoproteins (snRNPs) of both the major and the minor splicing pathways. It is not known whether the levels of spliceosomal snRNPs are decreased in SMA. Here we analyzed the consequence of SMN deficiency on snRNP metabolism in the spinal cord of mouse models of SMA with differing phenotypic severities. We demonstrate that the expression of a subset of Gemin proteins and snRNP assembly activity are dramatically reduced in the spinal cord of severe SMA mice. Comparative analysis of different tissues highlights a similar decrease in SMN levels and a strong impairment of snRNP assembly in tissues of severe SMA mice, although the defect appears smaller in kidney than in neural tissue. We further show that the extent of reduction in both Gemin proteins expression and snRNP assembly activity in the spinal cord of SMA mice correlates with disease severity. Remarkably, defective SMN complex function in snRNP assembly causes a significant decrease in the levels of a subset of snRNPs and preferentially affects the accumulation of U11 snRNP—a component of the minor spliceosome—in tissues of severe SMA mice. Thus, impairment of a ubiquitous function of SMN changes the snRNP profile of SMA tissues by unevenly altering the normal proportion of endogenous snRNPs. These findings are consistent with the hypothesis that SMN deficiency affects the splicing machinery and in particular the minor splicing pathway of a rare class of introns in SMA

    A cell system for phenotypic screening of modifiers of SMN2 gene expression and function.

    Get PDF
    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease caused by homozygous inactivation of the SMN1 gene and reduced levels of the survival motor neuron (SMN) protein. Since higher copy numbers of the nearly identical SMN2 gene reduce disease severity, to date most efforts to develop a therapy for SMA have focused on enhancing SMN expression. Identification of alternative therapeutic approaches has partly been hindered by limited knowledge of potential targets and the lack of cell-based screening assays that serve as readouts of SMN function. Here, we established a cell system in which proliferation of cultured mouse fibroblasts is dependent on functional SMN produced from the SMN2 gene. To do so, we introduced the entire human SMN2 gene into NIH3T3 cell lines in which regulated knockdown of endogenous mouse Smn severely decreases cell proliferation. We found that low SMN2 copy number has modest effects on the cell proliferation phenotype induced by Smn depletion, while high SMN2 copy number is strongly protective. Additionally, cell proliferation correlates with the level of SMN activity in small nuclear ribonucleoprotein assembly. Following miniaturization into a high-throughput format, our cell-based phenotypic assay accurately measures the beneficial effects of both pharmacological and genetic treatments leading to SMN upregulation. This cell model provides a novel platform for phenotypic screening of modifiers of SMN2 gene expression and function that act through multiple mechanisms, and a powerful new tool for studies of SMN biology and SMA therapeutic development

    SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain

    Get PDF
    Spinal muscular atrophy (SMA) is a recessive neuromuscular disease caused by mutations in the human survival motor neuron 1 (SMN1) gene. The human SMN protein is part of a large macromolecular complex involved in the biogenesis of small ribonucleoproteins. Previously, we showed that SMN is a sarcomeric protein in flies and mice. In this report, we show that the entire mouse Smn complex localizes to the sarcomeric Z-disc. Smn colocalizes with α-actinin, a Z-disc marker protein, in both skeletal and cardiac myofibrils. Furthermore, this localization is both calcium- and calpain-dependent. Calpains are known to release proteins from various regions of the sarcomere as a part of the normal functioning of the muscle; however, this removal can be either direct or indirect. Using mammalian cell lysates, purified native SMN complexes, as well as recombinant SMN protein, we show that SMN is a direct target of calpain cleavage. Finally, myofibers from a mouse model of severe SMA, but not controls, display morphological defects that are consistent with a Z-disc deficiency. These results support the view that the SMN complex performs a muscle-specific function at the Z-discs

    Subcellular localization of the human SMN protein in NIH3T3-SMN2/Smn<sub>RNAi</sub> cell lines.

    No full text
    <p>Indirect immunofluorescence and confocal microscopy analysis of NIH3T3-Smn<sub>RNAi</sub> (A and D), NIH3T3-SMN2<sub>low</sub>/Smn<sub>RNAi</sub> (B and E) and NIH3T3-SMN2<sub>high</sub>/Smn<sub>RNAi</sub> (C and F) cell lines using monoclonal antibodies specific to human SMN (hSMN, panels A–C) or both mouse and human SMN (SMN, panels D–F). Scale bar, 10 µm.</p

    Pharmacological modulation of SMN-dependent proliferation in NIH3T3 cells.

    No full text
    <p>(A) Dose-response analysis of VPA treatment on cell proliferation of SMN-deficient NIH3T3-Smn<sub>RNAi</sub> and NIH3T3-SMN2<sub>low</sub>/Smn<sub>RNAi</sub> cells. In these experiments, NIH3T3 cells were cultured for 5 days with Dox prior to seeding in six replicate wells of a 96-well plate in the presence of Dox. Vehicle or increasing amounts of VPA were added 4 hours later. For each group and treatment, cell number was determined at 5 days post-plating and normalized to that of the corresponding vehicle-treated cells. Data are represented as mean and SEM (n = 6; * = p<0.05; ** = p<0.01; *** = p<0.001; one-way ANOVA). (B–C) RT-qPCR analysis of mouse Smn and human SMN2 mRNA levels in NIH3T3-Smn<sub>RNAi</sub> (B) and NIH3T3-SMN2<sub>low</sub>/Smn<sub>RNAi</sub> (C) cells cultured with Dox for 3 days and then in the presence of either water (Vehicle) or 1 mM VPA for additional 4 days. Data from triplicate RT-qPCR experiments normalized to Gapdh mRNA are represented as mean and SEM (** = p<0.01; t-test). (D–E) Western blot analysis of SMN protein levels in NIH3T3-Smn<sub>RNAi</sub> (D) and NIH3T3-SMN2<sub>low</sub>/Smn<sub>RNAi</sub> (E) cells cultured with Dox for 3 days and then in the presence of water (Vehicle) or 1 mM VPA for additional 4 days. Blots were probed with an antibody that recognizes both mouse and human SMN proteins. SMN levels in VPA-treated relative to vehicle-treated cells are shown at the bottom.</p

    SMN Is Essential for the Biogenesis of U7 Small Nuclear Ribonucleoprotein and 3′-End Formation of Histone mRNAs

    No full text
    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here, we investigated SMN requirement for the biogenesis and function of U7—an snRNP specialized in the 3′-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3′-extended and polyadenylated transcripts followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3′-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo and identify an additional RNA pathway disrupted in SMA
    corecore