19 research outputs found

    Utilizing List Exchange and Non-directed Donation through “Chain” Paired Kidney Donations

    Get PDF
    In a list exchange (LE), the intended recipient in an incompatible pair receives priority on the deceased donor waitlist (DD-waitlist) after the paired incompatible donor donates a kidney to a DD-waitlist candidate. A non-directed donor’s (ND-D) kidney is usually transplanted directly to a DD-waitlist candidate. These two established practices would help even more transplant candidates if they were integrated with kidney paired donation (KPD). We consider a scenario in which the donor of an LE intended recipient (LE-IR) donates to a compatible KPD intended recipient (KPD-IR), and the KPD donor (KPD-D) donates to the waitlist (an LE-chain). We consider a similar scenario in which an ND-D donates to a KPD-IR and the KPD-D donates to the DD-waitlist (an ND-chain). Using data derived from the New England Program for Kidney Exchange (NEPKE) and from OPTN/SRTR recipient-donor distributions, simulations are presented to evaluate the potential impact of chain exchanges coordinated with KPD. LE donors (LE-D) and ND-D who are ABO-O result in the highest number of additional transplants, while results for ABO-A and B donors are similar to each other. We recommend that both LE and ND donations be utilized through chain exchanges

    Utilizing List Exchange and Non-directed Donation through “Chain” Paired Kidney Donations

    Get PDF
    In a list exchange (LE), the intended recipient in an incompatible pair receives priority on the deceased donor waitlist (DD-waitlist) after the paired incompatible donor donates a kidney to a DD-waitlist candidate. A non-directed donor’s (ND-D) kidney is usually transplanted directly to a DD-waitlist candidate. These two established practices would help even more transplant candidates if they were integrated with kidney paired donation (KPD). We consider a scenario in which the donor of an LE intended recipient (LE-IR) donates to a compatible KPD intended recipient (KPD-IR), and the KPD donor (KPD-D) donates to the waitlist (an LE-chain). We consider a similar scenario in which an ND-D donates to a KPD-IR and the KPD-D donates to the DD-waitlist (an ND-chain). Using data derived from the New England Program for Kidney Exchange (NEPKE) and from OPTN/SRTR recipient-donor distributions, simulations are presented to evaluate the potential impact of chain exchanges coordinated with KPD. LE donors (LE-D) and ND-D who are ABO-O result in the highest number of additional transplants, while results for ABO-A and B donors are similar to each other. We recommend that both LE and ND donations be utilized through chain exchanges

    Increasing the Opportunity of Live Kidney Donation by Matching for Two and Three Way Exchanges

    Get PDF
    Background: To expand the opportunity for paired live donor kidney transplantation, computerized matching algorithms have been designed to identify maximal sets of compatible donor/recipient pairs from a registry of incompatible pairs submitted as candidates for transplantation. Methods: Demographic data of patients who had been evaluated for live donor kidney transplantation but found to be incompatible with their potential donor (because of ABO blood group or positive crossmatch) were submitted for computer analysis and matching. Data included ABO and HLA types of donor and recipient, %PRA and specificity of recipient alloantibody, donor/recipient relationship, and the reason the donor was incompatible. The data set used for the initial simulation included 29 patients with one donor each and 16 patients with multiple donors for a total of 45 patients and 68 donor/patient pairs. In addition, a simulation based on OPTN/SRTR data was used to further assess the practical importance of multiple exchange combinations. Results: If only exchanges involving two patient-donor pairs were allowed, a maximum of 8 patient-donor pairs in the data set could exchange kidneys. If 3-way exchanges were also allowed, a maximum of 11 pairs could exchange kidneys. Simulations with OPTN/SRTR data demonstrate that the increase in the number of potential transplants if 3-way exchanges are allowed is robust, and does not depend on the particular patients in our sample. Conclusions: A computerized matching protocol can be used to identify donor/recipient pairs from a registry of incompatible pairs who can potentially enter into donor exchanges that otherwise would not readily occur

    Increasing the Opportunity of Live Kidney Donation by Matching for Two and Three Way Exchanges

    Get PDF
    Background: To expand the opportunity for paired live donor kidney transplantation, computerized matching algorithms have been designed to identify maximal sets of compatible donor/recipient pairs from a registry of incompatible pairs submitted as candidates for transplantation. Methods: Demographic data of patients who had been evaluated for live donor kidney transplantation but found to be incompatible with their potential donor (because of ABO blood group or positive crossmatch) were submitted for computer analysis and matching. Data included ABO and HLA types of donor and recipient, %PRA and specificity of recipient alloantibody, donor/recipient relationship, and the reason the donor was incompatible. The data set used for the initial simulation included 29 patients with one donor each and 16 patients with multiple donors for a total of 45 patients and 68 donor/patient pairs. In addition, a simulation based on OPTN/SRTR data was used to further assess the practical importance of multiple exchange combinations. Results: If only exchanges involving two patient-donor pairs were allowed, a maximum of 8 patient-donor pairs in the data set could exchange kidneys. If 3-way exchanges were also allowed, a maximum of 11 pairs could exchange kidneys. Simulations with OPTN/SRTR data demonstrate that the increase in the number of potential transplants if 3-way exchanges are allowed is robust, and does not depend on the particular patients in our sample. Conclusions: A computerized matching protocol can be used to identify donor/recipient pairs from a registry of incompatible pairs who can potentially enter into donor exchanges that otherwise would not readily occur

    Combined liver-kidney transplantation and the effect of preformed lymphocytotoxic antibodies

    Get PDF
    Thirty-eight sequentially placed liver and kidney allografts were evaluated with respect to patient and graft survival, and the influence of preformed lymphocytotoxic antibodies was analysed. The results suggest that the survival rate of combined liver and kidney transplantation is similar to the survival rate of liver transplantation alone. Sequentially placed kidney allografts may be protected from hyperacute rejection in the presence of donor specific lymphocytotoxic antibodies, but not in all instances. Both patient and kidney allograft survival was lower in positive crossmatch patients (33% and 17% respectively) than in negative crossmatch patients (78% and 75%). High levels of panel reactive antibodies (>10%) also appeared to have a deleterious effect on survival, although the majority of the patients who failed also had a positive crossmatch. Although preformed lymphocytotoxic antibodies are not an absolute contraindication to combined liver-kidney transplantation, they do appear to have a deleterious effect on long-term graft survival. However, more correlation with clinical parameters is needed. © 1994
    corecore