42 research outputs found

    Brain-Inspired Spiking Neural Network for Online Unsupervised Time Series Prediction

    Full text link
    Energy and data-efficient online time series prediction for predicting evolving dynamical systems are critical in several fields, especially edge AI applications that need to update continuously based on streaming data. However, current DNN-based supervised online learning models require a large amount of training data and cannot quickly adapt when the underlying system changes. Moreover, these models require continuous retraining with incoming data making them highly inefficient. To solve these issues, we present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN), trained with spike timing dependent plasticity (STDP). CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding by measuring the membrane potential of neurons in the recurrent layer of the RSNN with the highest betweenness centrality. We also use topological data analysis to propose a novel methodology using the Wasserstein Distance between the persistence homologies of the predicted and observed time series as a loss function. We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.Comment: Manuscript accepted to be published in IJCNN 202

    Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal Classification

    Full text link
    Spiking Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence. Although recent SNNs trained with supervised backpropagation show classification accuracy comparable to deep networks, the performance of unsupervised learning-based SNNs remains much lower. This paper presents a heterogeneous recurrent spiking neural network (HRSNN) with unsupervised learning for spatio-temporal classification of video activity recognition tasks on RGB (KTH, UCF11, UCF101) and event-based datasets (DVS128 Gesture). The key novelty of the HRSNN is that the recurrent layer in HRSNN consists of heterogeneous neurons with varying firing/relaxation dynamics, and they are trained via heterogeneous spike-time-dependent-plasticity (STDP) with varying learning dynamics for each synapse. We show that this novel combination of heterogeneity in architecture and learning method outperforms current homogeneous spiking neural networks. We further show that HRSNN can achieve similar performance to state-of-the-art backpropagation trained supervised SNN, but with less computation (fewer neurons and sparse connection) and less training data.Comment: 32 pages, 11 Figures, 4 Tables. arXiv admin note: text overlap with arXiv:1511.03198 by other author

    A Study on Economy by Application of Agricultural Waste Materials for Improvement of Sub-grade of Flexible Pavement

    Get PDF
    This paper presents results of an experimental investigation, carried out to study the effects of admixture like rice husk ash (RHA) on the strength properties of a locally available clayey soil with soft consistency. This soil was mixed with different proportions of RHA (3%, 6%, 9% and 12% by weight of dry soil) at corresponding optimum moisture content (OMC) and also at moisture contents 2% and 5% above optimum moisture content (OMC+2%), (OMC+5%). The cost of stabilization may be minimised by using the agricultural waste materials like RHA which also minimises the environmental hazards. The laboratory test results show marked improvement of strength of soil on addition of admixture (RHA) in terms of California Bearing Ratio (CBR). It appear from the experimental results, soaked CBR value of untreated soil is 3.50% and reaches maximum value i.e 16.80% when mixed with 9% RHA at the respective OMC. Further, an attempt has been made to observe the effect of moisture on the strength properties of the original as well as stabilized soil. The paper highlights the use of RHA for sub-grade improvement in case of low cost roads

    Charged anisotropic matter with linear or nonlinear equation of state

    Full text link
    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplification achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or non-linear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019 C10^{19}\,C) and maximum electric field intensities are very large (1023−1024 statvolt/cm10^{23}-10^{24}\,statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.Comment: 22 Latex pages, 17 figures, Inclusion of new paragraph at the end of Conclusion & some of the old captions of the Figures are replaced with new caption

    XMD: An Expansive Hardware-telemetry based Mobile Malware Detector to enhance Endpoint Detection

    Full text link
    Hardware-based Malware Detectors (HMDs) have shown promise in detecting malicious workloads. However, the current HMDs focus solely on the CPU core of a System-on-Chip (SoC) and, therefore, do not exploit the full potential of the hardware telemetry. In this paper, we propose XMD, an HMD that uses an expansive set of telemetry channels extracted from the different subsystems of SoC. XMD exploits the thread-level profiling power of the CPU-core telemetry, and the global profiling power of non-core telemetry channels, to achieve significantly better detection performance than currently used Hardware Performance Counter (HPC) based detectors. We leverage the concept of manifold hypothesis to analytically prove that adding non-core telemetry channels improves the separability of the benign and malware classes, resulting in performance gains. We train and evaluate XMD using hardware telemetries collected from 723 benign applications and 1033 malware samples on a commodity Android Operating System (OS)-based mobile device. XMD improves over currently used HPC-based detectors by 32.91% for the in-distribution test data. XMD achieves the best detection performance of 86.54% with a false positive rate of 2.9%, compared to the detection rate of 80%, offered by the best performing signature-based Anti-Virus(AV) on VirusTotal, on the same set of malware samples.Comment: Revised version based on peer review feedback. Manuscript to appear in IEEE Transactions on Information Forensics and Securit
    corecore