920 research outputs found

    Electrochemical fabrication of ultralow noise metallic nanowires with hcp crystalline lattice

    Full text link
    We experimentally demonstrate that low-frequency electrical noise in silver nanowires is heavily suppressed when the crystal structure of the nanowires is hexagonal closed pack (hcp) rather than face centered cubic (fcc). Using a low-potential electrochemical method we have grown single crystalline silver nanowires with hcp crystal structure, in which the noise at room temperature is two to six orders of magnitude lower than that in the conventional fcc nanowires of the same diameter. We suggest that motion of dislocations is probably the primary source of electrical noise in metallic nanowires, which is strongly diminished in hcp crystals.Comment: 7 pages, 4 figure

    Nanotube Piezoelectricity

    Full text link
    We combine ab initio, tight-binding methods and analytical theory to study piezoelectric effect of boron nitride nanotubes. We find that piezoelectricity of a heteropolar nanotube depends on its chirality and diameter and can be understood starting from the piezoelectric response of an isolated planar sheet, along with a structure specific mapping from the sheet onto the tube surface. We demonstrate that coupling between the uniaxial and shear deformation are only allowed in the nanotubes with lower chiral symmetry. Our study shows that piezoelectricity of nanotubes is fundamentally different from its counterpart in three dimensional (3D) bulk materials.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX4 macros. Also available at http://www.physics.upenn.edu/~nsai/preprints/bn_piezo/index.htm

    Theory of structural response to macroscopic electric fields in ferroelectric systems

    Full text link
    We have developed and implemented a formalism for computing the structural response of a periodic insulating system to a homogeneous static electric field within density-functional perturbation theory (DFPT). We consider the thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with respect to the internal structural parameters R and unit cell strain eta yields the equilibrium structure at fixed electric field e and polarization P, respectively. First-order expansion of E(R,eta,e) in e leads to a useful approximation in which R(P) and eta(P) can be obtained by simply minimizing the zero-field internal energy with respect to structural coordinates subject to the constraint of a fixed spontaneous polarization P. To facilitate this minimization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are consistent with the discretized form of the Berry-phase expression. We then describe the application of this approach to several problems associated with bulk and short-period superlattice structures of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects of compositionally broken inversion symmetry, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the lattice contributions to the linear and the non-linear dielectric constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm

    Structural and dielectric properties of Sr2_{2}TiO4_{4} from first principles

    Full text link
    We have investigated the structural and dielectric properties of Sr2_{2}TiO4_{4},the first member of the Srn+1_{n+1}Tin_{n}O3n+1_{3n+1} Ruddlesden-Popper series, within density functional theory. Motivated by recent work in which thin films of Sr2_{2}TiO4_{4} were grown by molecular beam epitaxy (MBE) on SrTiO3_{3} substrates, the in-plane lattice parameter was fixed to the theoretically optimized lattice constant of cubic SrTiO3_{3} (n=\infty), while the out-of-plane lattice parameter and the internal structural parameters were relaxed. The fully relaxed structure was also investigated. Density functional perturbation theory was used to calculate the zone-center phonon frequencies, Born effective charges, and the electronic dielectric permittivity tensor. A detailed study of the contribution of individual infrared-active modes to the static dielectric permittivity tensor was performed. The calculated Raman and infrared phonon frequencies were found to be in agreement with experiment where available. Comparisons of the calculated static dielectric permittivity with experiments on both ceramic powders and epitaxial thin films are discussed.Comment: 11 pages, 1 figure, 8 tables, submitted to Phys. Rev.

    Quasi-periodic oscillations in GX 339-4 during the 2021 Outburst observed with Insight-HXMT

    Full text link
    A new outburst of GX 339-4 in 2021 was monitored by the Hard X-ray Modulation Telescope (\textit{Insight}-HXMT). By using the data of \textit{Insight}-HXMT from February to March 2021, we make the X-ray timing analysis of this new outburst. Based on the results of count rates, hardness-intensity diagram (HID) and power density spectrum (PDS), we confirm that the source exhibits spectral transitions from the low-hard state (LHS) to the hard-intermediate state (HIMS). During the transition from the LHS to the HIMS, Low-frequency Quasi-periodic oscillations (LFQPOs) are detected in the PDS. We found that these QPOs are all type-C QPOs with centroid frequencies evolving from 0.10.60.1 -0.6 Hz in the LHS and in the 131 -3 Hz frequency range in HIMS. The QPO features above 50 keV are reported for the first time in this black hole by \textit{Insight}-HXMT. The QPO rms stays stable with time but decreases with energy at higher energy above 10\sim 10 keV. We also find that the phase lag of the type-C QPO is close to zero in the early outburst stage, but becomes positive as the outburst evolves, with a hard lag of \sim 0.6-1.2 rad in 5010050 -100 keV. The implications of the phase lag in high energy bands and possible physical mechanisms to explain those observations are also discussed.Comment: 15 pages, ApJ in pres

    Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure

    Full text link
    Using a first-principles approach based on density-functional theory, we find that a large tetragonal strain can be induced in PbTiO3 by application of a negative hydrostatic pressure. The structural parameters and the dielectric and dynamical properties are found to change abruptly near a crossover pressure, displaying a ``kinky'' behavior suggestive of proximity to a phase transition. Analogous calculations for BaTiO3 show that the same effect is also present there, but at much higher negative pressure. We investigate this unexpected behavior of PbTiO3 and discuss an interpretation involving a phenomenological description in terms of a reduced set of relevant degrees of freedom.Comment: 9 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/st_pbti/index.htm

    Boron Nitride Monolayer: A Strain-Tunable Nanosensor

    Full text link
    The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure

    Nickel-Catalyzed Carbon–Carbon Bond-Forming Reactions of Unactivated Tertiary Alkyl Halides: Suzuki Arylations

    Get PDF
    The first Suzuki cross-couplings of unactivated tertiary alkyl electrophiles are described. The method employs a readily accessible catalyst (NiBr[subscript 2]·diglyme/4,4′-di-tert-butyl-2,2′-bipyridine, both commercially available) and represents the initial example of the use of a group 10 catalyst to cross-couple unactivated tertiary electrophiles to form C–C bonds. This approach to the synthesis of all-carbon quaternary carbon centers does not suffer from isomerization of the alkyl group, in contrast with the umpolung strategy for this bond construction (cross-coupling of a tertiary alkylmetal with an aryl electrophile). Preliminary mechanistic studies are consistent with the generation of a radical intermediate along the reaction pathway.National Institute of General Medical Sciences (U.S.) (R01-GM62871)Merck Research Laboratories (Summer Fellowship
    corecore