9 research outputs found

    Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis.

    Get PDF
    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov't2013 Jun2013 04 17importe

    Amyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis.

    Get PDF
    Amyloid precursor-like protein 2 (APLP2) is aberrantly expressed in pancreatic cancer. Here we showed that APLP2 is increased in pancreatic cancer metastases, particularly in metastatic lesions found in the diaphragm and intestine. Examination of matched human primary tumor-liver metastasis pairs showed that 38.1% of the patients had positive APLP2 expression in both the primary tumor and the corresponding liver metastasis. Stable knock-down of APLP2 expression (with inducible shRNA) in pancreatic cancer cells reduced the ability of these cells to migrate and invade. Loss of APLP2 decreased cortical actin and increased intracellular actin filaments in pancreatic cancer cells. Down-regulation of APLP2 decreased the weight and metastasis of orthotopically transplanted pancreatic tumors in nude mice

    Important relationships between Rab and MICAL proteins in endocytic trafficking

    No full text
    The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport

    Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration

    No full text
    Many neurodegenerative diseases, including Huntington’s disease (HD) and Alzheimer’s disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer’s disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases. Abbreviations: AD: Alzheimer’s disease CLEAR: Coordinated Lysosomal Expression and Regulation HTT: Huntingtin HD: Huntington’s disease MEF: Mouse embryonic fibroblasts HTT: Mutant Huntingtin MVB: Multivesicular bodies TFEB: Transcription factor E
    corecore