2 research outputs found

    Advanced Applications Of Big Data Analytics

    Full text link
    Human life is progressing with advancements in technology such as laptops, smart phones, high speed communication networks etc., which helps us by reducing load in doing our daily activities. For instance, one can chat, talk, make video calls with his/her friends instantly using social networking platforms such as Facebook, Twitter, Google+, WhatsApp etc. LinkedIn, Indeed, etc., connects employees with potential employers. The number of people using these applications are increasing day-by-day, and so is the amount of data generated from these applications. Processing such vast amounts of data, may require new techniques for gaining valuable insights. Network theory concepts form the core of such techniques that are designed to uncover valuable insights from large social network datasets. Many interesting problems such as ranking top-K nodes and top-K communities that can effectively diffuse any given message into the network, restaurant recommendations, friendship recommendations on social networking websites, etc., can be addressed by using the concepts of network centrality. Network centrality measures such as In-degree centrality, Out-degree centrality, Eigen-vector centrality, Katz Broadcast centrality, Katz Receive centrality, and PageRank centrality etc., comes handy in solving these problems. In this thesis, we propose different formulae for computing the strength for identifying top-K nodes and communities that can spread viral marketing messages into the network. The strength formulae are based on Katz Broadcast centrality, Resolvent matrix measure and Personalized PageRank measure. Moreover, the effects of intercommunity and intracommunity connectivity in ranking top-K communities are studied. Top-K nodes for spreading any message effectively into the network are determined by using Katz Broadcast centrality measure. Results obtained through this technique are compared with the top-K nodes obtained by using Degree centrality measure. We also studied the effects of varying α on the number of nodes in search space. In Algorithms 2 and 3, top-K communities are obtained by using Resolvent matrix and Personalized PageRank measure. Algorithm 2 results were studied by varying the parameter α

    Identification of top-K nodes in large networks using Katz centrality

    No full text
    Abstract Network theory concepts form the core of algorithms that are designed to uncover valuable insights from various datasets. Especially, network centrality measures such as Eigenvector centrality, Katz centrality, PageRank centrality etc., are used in retrieving top-K viral information propagators in social networks,while web page ranking in efficient information retrieval, etc. In this paper, we propose a novel method for identifying top-K viral information propagators from a reduced search space. Our algorithm computes the Katz centrality and Local average centrality values of each node and tests the values against two threshold (constraints) values. Only those nodes, which satisfy these constraints, form the search space for top-K propagators. Our proposed algorithm is tested against four datasets and the results show that the proposed algorithm is capable of reducing the number of nodes in search space at least by 70%. We also considered the parameter ( α\alpha α and β\beta β ) dependency of Katz centrality values in our experiments and established a relationship between the α\alpha α values, number of nodes in search space and network characteristics. Later, we compare the top-K results of our approach against the top-K results of degree centrality
    corecore