16 research outputs found

    Spatially fractionated stereotactic body radiation therapy (Lattice) for large tumors

    Get PDF
    Purpose: Stereotactic body radiation therapy (SBRT) has demonstrated clinical benefits for patients with metastatic and/or unresectable cancer. Technical considerations of treatment delivery and nearby organs at risk can limit the use of SBRT in large tumors or those in unfavorable locations. Spatially fractionated radiation therapy (SFRT) may address this limitation because this technique can deliver high-dose radiation to discrete subvolume vertices inside a tumor target while restricting the remainder of the target to a safer lower dose. Indeed, SFRT, such as GRID, has been used to treat large tumors with reported dramatic tumor response and minimal side effects. Lattice is a modern approach to SFRT delivered with arc-based therapy, which may allow for safe, high-quality SBRT for large and/or deep tumors. Methods and Materials: Herein, we report the results of a dosimetry and quality assurance feasibility study of Lattice SBRT in 11 patients with 12 tumor targets, each ≥10 cm in an axial dimension. Prior computed tomography simulation scans were used to generate volumetric modulated arc therapy Lattice SBRT plans that were then delivered on clinically available Linacs. Quality assurance testing included external portal imaging device and ion chamber analyses. Results: All generated plans met the standard SBRT dose constraints, such as those from the American Association of Physicists in Medicine Task Group 101. Additionally, we provide a step-by-step approach to generate and deliver Lattice SBRT plans using commercially available treatment technology. Conclusions: Lattice SBRT is currently being tested in a prospective trial for patients with metastatic cancer who need palliation of large tumors (NCT04553471, NCT04133415)

    HOXA5 Regulates hMLH1 Expression in Breast Cancer Cells

    No full text
    Homeobox protein HOXA5 functions as a transcriptional factor for genes that are not only involved in segmentation identity but also in cell differentiation. Although HOXA5 has been shown to regulate the expression of the tumor-suppressor protein p53, its role in breast tumorigenesis is not well understood. Using yeast as a model system, we now demonstrate that overexpression of HOXA5 in yeast can be used to identify downstream target genes that are homologous in humans. One such identified gene was that of the mismatch repair pathway component MutL homolog 1. Analysis of the promoter region of the gene for human MutL homolog 1 (hMLH1) displayed several putative HOXA5-binding sites. In transient transfection experiments, the overexpression of HOXA5 transactivated the hMLH1 promoter-reporter construct. In addition, chromatin immunoprecipitation assay using a human breast cancer cell line MCF-7 demonstrated that HOXA5 binds to the hMLH1 promoter in vivo. Furthermore, we demonstrate that, in the presence of HOXA5, there is an increase in in vivo repair activity in MCF-7 cells. Taken together, our results indicate that HOXA5 is a transcriptional regulator of hMLH1 in breast cancer cells

    Brain metastasis growth on preradiosurgical magnetic resonance imaging

    No full text
    Purpose: A previous analysis showed that brain metastases that are treated with frameless stereotactic radiation surgery (SRS) and planned with magnetic resonance imaging (MRI) \u3e14 days before SRS had worse local control (LC). To evaluate if worse LC may be due to unaccounted interval metastasis growth and radiosurgical marginal miss, we quantified growth before SRS on preradiosurgical imaging. Methods and materials: We reviewed data from patients who were treated with fixed-frame SRS for brain metastases at our institution between 2010 and 2013 and had pretreatment diagnostic brain MRI and SRS-planning MRI scans available. Metastases were contoured on the pretreatment MRI scan and the day-of-treatment planning MRI scan for volumetric comparison. Growth rates were calculated. Serial volumetric contour expansions on the pretreatment MRI scans were used to determine the minimum margin necessary to encompass the entire metastasis on day of the SRS. LC was estimated by Kaplan-Meier method. Results: Among 411 brain metastases in 165 patients, the time between pretreatment and treatment MRI was associated with metastasis growth (P \u3c.001) with a mean growth rate of 0.02 ml/day (95% confidence interval, 0.01-0.03) and a 1.35-fold volume increase at 14 days. Time between MRI scans was associated with the amount of margin that was needed to target the entire brain metastasis volume on the day of the SRS (P \u3c.001), as were volume of metastasis on the pre-treatment MRI (P \u3c.001) and melanoma histology (P \u3c.001). LC was not associated with growth rate among patients who underwent fixed-frame SRS. Conclusions: Time between pretreatment MRI and SRS is associated with brain metastasis growth, but LC is not compromised when patients receive fixed-frame SRS with same-day MRI planning. Margins may be needed for metastases that are treated with frameless SRS to account for growth between the planning MRI and SRS delivery. In this study, we quantify brain metastasis growth over time by taking advantage of the availability of 2 pretreatment magnetic resonance imaging scans taken at 2 time points among patients treated with frame-fixed radiation surgery. We found that metastasis growth is associated with time, initial metastasis size, melanoma histology, and concurrent chemotherapy. Performing serial margin expansions demonstrated factors that are associated with the amount of margin that is needed to target the entire metastasis on the day of radiation surgery
    corecore