3 research outputs found

    Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19

    Get PDF
    BackgroundMitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined.MethodsWe measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19.ResultsCirculating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy.ConclusionThese results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes.FundingWashington University Institute of Clinical Translational Sciences COVID-19 Research Program and Washington University Institute of Clinical Translational Sciences (ICTS) NIH grant UL1TR002345

    Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection

    Get PDF
    Complement activation has been implicated in the pathogenesis of severe SARS-CoV-2 infection. However, it remains to be determined whether increased complement activation is a broad indicator of critical illness (and thus, no different in COVID-19). It is also unclear which pathways are contributing to complement activation in COVID-19, and if complement activation is associated with certain features of severe SARS-CoV-2 infection, such as endothelial injury and hypercoagulability. To address these questions, we investigated complement activation in the plasma from patients with COVID-19 prospectively enrolled at two tertiary care centers: Washington University School of Medicine (n=134) and Yale School of Medicine (n=49). We compared our patients to two non-COVID cohorts: (a) patients hospitalized with influenza (n=54), and (b) patients admitted to the intensive care unit (ICU) with acute respiratory failure requiring invasive mechanical ventilation (IMV, n=22). We demonstrate that circulating markers of complement activation are elevated in patients with COVID-19 compared to those with influenza and to patients with non-COVID-19 respiratory failure. Further, the results facilitate distinguishing those who are at higher risk of worse outcomes such as requiring ICU admission, or IMV. Moreover, the results indicate enhanced activation of the alternative complement pathway is most prevalent in patients with severe COVID-19 and is associated with markers of endothelial injury (i.e., angiopoietin-2) as well as hypercoagulability (i.e., thrombomodulin and von Willebrand factor). Our findings identify complement activation to be a distinctive feature of COVID-19, and provide specific targets that may be utilized for risk prognostication, drug discovery and personalized clinical trials
    corecore