287 research outputs found
Correlation of spirometry and six minute walk test in patients with chronic obstructive pulmonary disease from Sundargarh, Odisha, India
Background: Six‑Minute Walk Test (6MWT) is a simple, objective, reproducible test which correlated well with different spirometric indices, and thus able to predict severity of Chronic Obstructive Pulmonary Disease (COPD) and can replace spirometry in resource poor set‑up. Here, author evaluated the correlation of 6 minute walk distance (6MWD) with spirometric indices in COPD patients and the potential of 6MWT as an alternative to the assessment of severity of COPD.Methods: This cross-sectional observational study included a total of 80 COPD patients, diagnosed by GOLD criteria (Post bronchodilator FEV1/ FVC ratio <0.7). Modified Medical Research Council (mMRC) grading was used (age, weight, height, body mass index- BMI and breathlessness) and all the patients underwent spirometric measurement of FEV1, FVC and FEV1/ FVC ratio and tests were repeated after bronchodilation using 200-400 μg of salbutamol. 6MWT was performed following American Thoracic Society (ATS) protocol of 6MWT and distance was measured in meters.Results: Author found significant negative correlation of 6MWT with age (r=-0.384, p=0.00) and mMRC grading of dyspnea (r=-0.559, p=0.00) and significant positive correlation with height (r=0.267, p=0.019) and weight (r=0.293, p=0.008). Significant positive correlation of 6MWD was noted with post bronchodilator FEV1(r=0.608, p=0.00), FEV1% (r=0.429, p=0.00), FVC (r=0.514 p=0.00), FVC% (r=0.313 p=0.005), FEV1/FVC % (r=0.336, p=0.001). Positive correlation was also observed between 6MWT and BMI but statistically insignificant (r=0.177, p=0.116). There was significant negative correlation between 6MWT and GOLD staging (r=-0.536, p=0.00).Conclusions: This finding concludes that 6MWT can be used for the assessment of severity of disease in COPD patients in places where spirometry is not available
Characterization of eDNA from the Clinical Strain Acinetobacter baumannii AIIMS 7 and Its Role in Biofilm Formation
Release of extracellular DNA (eDNA) was observed during in vitro growth of a clinical strain of Acinetobacter baumannii. Membrane vesicles (MV) of varying diameter (20–200 nm) containing DNA were found to be released by transmission electron microscopy (TEM) and atomic force microscopy (AFM). An assessment of the characteristics of the eDNA with respect to size, digestion pattern by DNase I/restriction enzymes, and PCR-sequencing, indicates a high similarity with genomic DNA. Role of eDNA in static biofilm formed on polystyrene surface was evaluated by biofilm augmentation assay using eDNA available in different preparations, for example, whole cell lysate, cell-free supernatant, MV suspension, and purified eDNA. Biofilm augmentation was seen up to 224.64%, whereas biofilm inhibition was 59.41% after DNase I treatment: confirming that eDNA facilitates biofilm formation in A. baumannii. This is the first paper elucidating the characteristics and role of eDNA in A. baumannii biofilm, which may provide new insights into its pathogenesis
An MFS Transporter-Like ORF from MDR Acinetobacter baumannii AIIMS 7 Is Associated with Adherence and Biofilm Formation on Biotic/Abiotic Surface
A major facilitator superfamily (MFS) transporter-like open reading frame (ORF) of 453 bp was identified in a pathogenic strain Acinetobacter baumannii AIIMS 7, and its association with adherence and biofilm formation was investigated. Reverse transcription PCR (RT-PCR) showed differential expression in surface-attached biofilm cells than nonadherent cells. In vitro translation showed synthesis of a ~17 kDa protein, further confirmed by cloning and heterologous expression in E. coli DH5α. Up to 2.1-, 3.1-, and 4.1- fold biofilm augmentation was observed on abiotic (polystyrene) and biotic (S. cerevisiae/HeLa) surface, respectively. Scanning electron microscopy (SEM) and gfp-tagged fluorescence microscopy revealed increased adherence to abiotic (glass) and biotic (S. cerevisiae) surface. Extracellular DNA(eDNA) was found significantly during active growth; due to probable involvement of the protein in DNA export, strong sequence homology with MFS transporter proteins, and presence of transmembrane helices. In summary, our findings show that the putative MFS transporter-like ORF (pmt) is associated with adherence, biofilm formation, and probable eDNA release in A. baumannii AIIMS 7
Characterization of the algC
Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P<0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces
Advances in Basic and Translational Research as Part of the Center for the Study of Complex Malaria in India.
The Center for the Study of Complex Malaria in India (CSCMi) is one of 10 International Centers of Excellence in Malaria Research funded by the National Institutes of Health since 2010. The Center combines innovative research with capacity building and technology transfer to undertake studies with clinical and translational impact that will move malaria control in India toward the ultimate goal of malaria elimination/eradication. A key element of each research site in the four states of India (Tamil Nadu, Gujarat, Odisha, and Meghalaya) has been undertaking community- and clinic-based epidemiology projects to characterize the burden of malaria in the region. Demographic and clinical data and samples collected during these studies have been used in downstream projects on, for example, the widespread use of mosquito repellants, the population genomics of Plasmodium vivax, and the serological responses to P. vivax and Plasmodium falciparum antigens that reflect past or present exposure. A focus has been studying the pathogenesis of severe malaria caused by P. falciparum through magnetic resonance imaging of cerebral malaria patients. Here we provide a snapshot of some of the basic and applied research the CSCMi has undertaken over the past 12 years and indicate the further research and/or clinical and translational impact these studies have had
Adult cerebral malaria: acute and subacute imaging findings, long-term clinical consequences
Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment
Adult cerebral malaria: acute and subacute imaging findings, long-term clinical consequences.
Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show MRI features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in two adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment
Malaria inflammation by xanthine oxidase-produced reactive oxygen species.
Malaria is a highly inflammatory disease caused by Plasmodium infection of host erythrocytes. However, the parasite does not induce inflammatory cytokine responses in macrophages in vitro and the source of inflammation in patients remains unclear. Here, we identify oxidative stress, which is common in malaria, as an effective trigger of the inflammatory activation of macrophages. We observed that extracellular reactive oxygen species (ROS) produced by xanthine oxidase (XO), an enzyme upregulated during malaria, induce a strong inflammatory cytokine response in primary human monocyte-derived macrophages. In malaria patients, elevated plasma XO activity correlates with high levels of inflammatory cytokines and with the development of cerebral malaria. We found that incubation of macrophages with plasma from these patients can induce a XO-dependent inflammatory cytokine response, identifying a host factor as a trigger for inflammation in malaria. XO-produced ROS also increase the synthesis of pro-IL-1β, while the parasite activates caspase-1, providing the two necessary signals for the activation of the NLRP3 inflammasome. We propose that XO-produced ROS are a key factor for the trigger of inflammation during malaria
- …